

Classwork

Exercises 1–5

1. Let $f(x) = \sin x$. Does f(2x) = 2f(x) for all values of x? Is it true for any values of x? Show work to justify your answer.

2. Let $f(x) = \log(x)$. Find a value for *a* such that f(2a) = 2f(a). Is there one? Show work to justify your answer.

3. Let $f(x) = 10^x$. Show that f(a + b) = f(a) + f(b) is true for $a = b = \log(2)$ and that it is not true for a = b = 2.

S.5

4. Let $f(x) = \frac{1}{x}$. Are there any real numbers a and b so that f(a + b) = f(a) + f(b)? Explain.

5. What do your findings from these Exercises illustrate about the linearity of these functions? Explain.

Wishful Thinking—Does Linearity Hold? 12/29/14

S.6

PRECALCULUS AND ADVANCED TOPICS

Problem Set

Examine the equations given in Problems 1–4, and show that the functions $f(x) = \cos x$ and $f(x) = \tan x$ are not linear transformations by demonstrating that they do not satisfy the conditions indicated for all real numbers. Then, find values of x and/or y for which the statement holds true.

- 1. $\cos(x + y) = \cos(x) + \cos(y)$
- $2. \quad \cos(2x) = 2\cos(x)$
- 3. $\tan(x+y) = \tan(x) + \tan(y)$
- 4. $\tan(2x) = 2\tan(x)$
- 5. Let $f(x) = \frac{1}{x^2}$, are there any real numbers a and b so that f(a + b) = f(a) + f(b)? Explain.
- 6. Let $f(x) = \log x$, find values of a such that f(3a) = 3f(a).
- 7. Let $f(x) = \log x$, find values of a such that f(ka) = kf(a).
- 8. Based on your results from the previous two problems, form a conjecture about whether $f(x) = \log x$ represents a linear transformation.
- 9. Let $f(x) = ax^2 + bx + c$.
 - a. Describe the set of all values for a, b, and c that make f(x + y) = f(x) + f(y) valid for all real numbers x and y.
 - b. What does your result indicate about the linearity of quadratic functions?

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

PRECALCULUS AND ADVANCED TOPICS

Lesson 2

M1

Trigonometry Table

Angles Measure (x degrees)	Angle Measure (x radians)	$\sin(x)$	$\cos(x)$
0			
30			
	$\frac{\pi}{4}$		
	$\frac{\pi}{3}$		
90			

Wishful Thinking—Does Linearity Hold? 12/29/14

engage^{ny}

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.