Lesson 6: Complex Numbers as Vectors

Classwork

Opening Exercises

Perform the indicated arithmetic operations for complex numbers $z=-4+5 i$ and $w=-1-2 i$.
a. $z+w$
b. $z-w$
c. $z+2 w$
d. $z-z$
e. Explain how you add and subtract complex numbers.

Exercise 1

1. The length of the vector that represents $z_{1}=6-8 i$ is 10 because $\sqrt{6^{2}+(-8)^{2}}=\sqrt{100}=10$.
a. Find at least seven other complex numbers that can be represented as vectors that have length 10 .
b. Draw the vectors on the coordinate axes provided below.

c. What do you observe about all of these vectors?
2. In the Opening Exercises, we computed $z+2 w$. Calculate this sum using vectors.
3. In the Opening Exercises, we also computed $z-z$. Calculate this sum using vectors.
4. For the vectors u and v pictured below, draw the specified sum or difference on the coordinate axes provided.
a. $u+v$
b. $v-u$
c. $2 u-v$
d. $-u-3 v$

5. Find the sum of $4+i$ and $-3+2 i$ geometrically.
6. Show that $(7+2 i)-(4-i)=3+3 i$ by representing the complex numbers as vectors.

Problem Set

1. Let $z=1+i$ and $w=1-3 i$. Find the following. Express your answers in $a+b i$ form.
a. $z+w$
b. $z-w$
c. $4 w$
d. $3 z+w$
e. $-w-2 z$
f. What is the length of the vector representing z ?
g. What is the length of the vector representing w ?
2. Let $u=3+2 i, v=1+i$, and $w=-2-i$. Find the following. Express your answer in $a+b i$ form, and represent the result in the plane.
a. $u-2 v$
b. $u-2 w$
c. $u+v+w$
d. $u-v+w$
e. What is the length of the vector representing u ?
f. What is the length of the vector representing $u-v+w$?

3. Find the sum of $-2-4 i$ and $5+3 i$ geometrically.
4. Show that $(-5-6 i)-(-8-4 i)=3-2 i$ by representing the complex numbers as vectors.
5. Let $z_{1}=a_{1}+b_{1} i, z_{2}=a_{2}+b_{2} i$, and $z_{3}=a_{3}+b_{3} i$. Prove the following using algebra or by showing with vectors.
a. $z_{1}+z_{2}=z_{2}+z_{1}$
b. $z_{1}+\left(z_{2}+z_{3}\right)=\left(z_{1}+z_{2}\right)+z_{3}$
6. Let $z=-3-4 i$ and $w=-3+4 i$.
a. Draw vectors representing z and w on the same set of axes.
b. What are the lengths of the vectors representing z and w ?
c. Find a new vector, u_{z}, such that u_{z} is equal to z divided by the length of the vector representing z.
d. Find u_{w}, such that u_{w} is equal to w divided by the length of the vector representing w.
e. Draw vectors representing u_{z} and u_{w} on the same set of axes as part (a).
f. What are the lengths of the vectors representing u_{z} and u_{w} ?
g. Compare the vectors representing u_{z} to z and u_{w} to w. What do you notice?
h. What is the value of u_{z} times u_{w} ?
i. What does your answer to part (h) tell you about the relationship between u_{z} and u_{w} ?
7. Let $z=a+b i$.
a. Let u_{z} be represented by the vector in the direction of z with length 1 . How can you find u_{z} ? What is the value of u_{z} ?
b. Let u_{w} be the complex number that when multiplied by u_{z}, the product is 1 . What is the value of u_{w} ?
c. What number could we multiply z by to get a product of 1 ?
8. Let $z=-3+5 i$.
a. Draw a picture representing $z+w=8+2 i$.
b. What is the value of w ?

