

Lesson 7: Complex Number Division

Classwork

Opening Exercise

Perform the indicated operations. Write your answer in a + bi form. Identify the real part of your answer and the imaginary part of your answer.

a. (2+3i) + (-7-4i)

b. $i^2(-4i)$

c. 3i - (-2 + 5i)

d. (3-2i)(-7+4i)

e. (-4-5i)(-4+5i)

PRECALCULUS AND ADVANCED TOPICS

Exercises

1. What is the multiplicative inverse of 2i?

2. Find the multiplicative inverse of 5 + 3i.

State the conjugate of each number, and then using the general formula for the multiplicative inverse of z = a + bi, find the multiplicative inverse.

3. 3 + 4i

4. 7 − 2*i*

Complex Number Division 1/30/15

PRECALCULUS AND ADVANCED TOPICS

5. *i*

6. 2

7. Show that $a = -1 + \sqrt{3}i$ and b = 2 satisfy $\frac{1}{a+b} = \frac{1}{a} + \frac{1}{b}$.

Complex Number Division 1/30/15

Problem Set

- 1. State the conjugate of each complex number. Then find the multiplicative inverse of each number, and verify by multiplying by a + bi and solving a system of equations.
 - a. -5*i*
 - b. $5 \sqrt{3}i$
- Find the multiplicative inverse of each number, and verify using the general formula to find multiplicative inverses of 2. numbers of the form z = a + bi.
 - i³ a.
 - $\frac{1}{3}$ b.
 - $\frac{\sqrt{3}-i}{4}$
 - c.
 - d. 1+2*i*
 - e. 4 3*i*
 - f. 2 + 3*i*
 - g. -5 4i
 - h. -3 + 2i
 - i. $\sqrt{2} + i$
 - j. $3 \sqrt{2} \cdot i$
 - k. $\sqrt{5} + \sqrt{3} \cdot i$
- Given $z_1 = 1 + i$ and $z_2 = 2 + 3i$. 3.
 - Let $w = z_1 \cdot z_2$. Find w and the multiplicative inverse of w. a.
 - Show that the multiplicative inverse of w is the same as the product of the multiplicative inverses of z_1 and z_2 . b.

Complex Number Division 1/30/15

