

# Lesson 8: Complex Number Division

# Classwork

# **Opening Exercises**

Use the general formula to find the multiplicative inverse of each complex number.

a. 2+3*i* 

b. -7 - 4*i* 

c. -4 + 5i

# Exercises 1–4

Find the conjugate, and plot the complex number and its conjugate in the complex plane. Label the conjugate with a prime symbol.

| 1. | A: $3 + 4i$  |   |     |     | 4 4 |   |   |   |   |   |   |   |   |
|----|--------------|---|-----|-----|-----|---|---|---|---|---|---|---|---|
| 2. | B: -2 - i    |   |     |     | 2   |   |   |   |   |   |   |   |   |
| 3. | <i>C</i> : 7 |   |     |     | 0   |   |   |   |   |   |   |   |   |
| 4. | D: 4i        | - | 3 - | 2 - | -1  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|    |              |   |     |     |     |   |   |   |   |   |   |   |   |
|    |              |   |     |     |     |   |   |   |   |   |   |   |   |



Lesson 8:

Date:

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

Complex Number Division 1/30/15





PRECALCULUS AND ADVANCED TOPICS

#### **Exercises 5–8**

Find the modulus.

5. 3 + 4i

6. -2 - i

7. 7

8. 4*i* 

# Exercises 9–11

Given z = a + bi.

9. Show that for all complex numbers z, |iz| = |z|.



Complex Number Division 1/30/15







PRECALCULUS AND ADVANCED TOPICS

10. Show that for all complex numbers  $z, z \cdot \overline{z} = |z|^2$ .

11. Explain the following: Every nonzero complex number z has a multiplicative inverse. It is given by  $\frac{1}{z} = \frac{\overline{z}}{|z|}$ .

# Example 1

 $\frac{2-6i}{2+5i}$ 

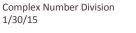
# Exercises 12–13

Divide.

12.  $\frac{3+2i}{-2-7i}$ 

13.  $\frac{3}{3-i}$ 







# **Problem Set**

- 1. Let z = 4 3i and w = 2 i. Show that
  - a.  $|z| = |\overline{z}|$
  - b.  $\left|\frac{1}{z}\right| = \frac{1}{|\overline{z}|}$
  - c. If |z| = 0, must it be that z = 0?
  - d. Give a specific example to show that |z + w| usually does not equal |z| + |w|.
- 2. Divide.
  - a.  $\frac{1-2i}{2i}$ <br/>b.  $\frac{5-2i}{5+2i}$
  - c.  $\frac{\sqrt{3}-2i}{-2-\sqrt{3}i}$
- 3. Prove that  $|zw| = |z| \cdot |w|$  for complex numbers z and w.
- 4. Given z = 3 + i, w = 1 + 3.
  - a. Find z + w, and graph z, w, and z + w on the same complex plane. Explain what you discover if you draw line segments from the origin to those points z,w, and z + w. Then draw line segments to connect w to z + w, and z + w to z.
  - b. Find -w, and graph z, w, and z w on the same complex plane. Explain what you discover if you draw line segments from the origin to those points z, w, and z w. Then draw line segments to connect w to z w, and z w to z.
- 5. Explain why  $|z + w| \le |z| + |w|$  and  $|z w| \le |z| + |w|$  geometrically. (Hint: Triangle inequality theorem)



Complex Number Division 1/30/15

