Lesson 15: Justifying the Geometric Effect of Complex

Multiplication

Classwork

Opening Exercise

For each exercise below, compute the product $w z$. Then, plot the complex numbers z, w, and $w z$ on the axes provided.
a. $z=3+i, w=1+2 i$

b. $\quad z=1+2 i, w=-1+4 i$

c. $\quad z=-1+i, w=-2-i$

d. For each part (a), (b), and (c), draw line segments connecting each point z, w and $w z$ to the origin. Determine a relationship between the arguments of the complex numbers z, w, and $w z$.

Exercises

1. Let $w=a+b i$ and $z=c+d i$.
a. Calculate the product $w z$.
b. Calculate the moduli $|w|,|z|$, and $|w z|$.
c. What can you conclude about the quantities $|w|,|z|$, and $|w z|$?
2. What does the result of Exercise 1 tell us about the geometric effect of the transformation $L(z)=w z$?
3. If z and w are the complex numbers with the specified arguments and moduli, locate the point that represents the product $w z$ on the provided coordinate axes.
a. $|w|=3, \arg (w)=\frac{\pi}{4}$
$|z|=\frac{2}{3}, \arg (z)=-\frac{\pi}{2}$

b. $\quad|w|=2, \arg (w)=\pi$
$|z|=1, \arg (z)=\frac{\pi}{4}$

c. $\quad|w|=\frac{1}{2}, \arg (w)=\frac{4 \pi}{3}$
$|z|=4, \arg (z)=-\frac{\pi}{6}$

Lesson Summary

For complex numbers z and w,

- The modulus of the product is the product of the moduli:

$$
|w z|=|w| \cdot|z|
$$

- The argument of the product is the sum of the arguments:

$$
\arg (w z)=\arg (w)+\arg (z)
$$

Problem Set

1. In the lesson, we justified our observation that the geometric effect of a transformation $L(z)=w z$ is a rotation by $\arg (w)$ and a dilation by $|w|$ for a complex number w that is represented by a point in the first quadrant of the coordinate plane. In this exercise, we will verify that this observation is valid for any complex number w. For a complex number $w=a+b i$, we only considered the case where $a>0$ and $b>0$. There are eight additional possibilities we need to consider.
a. \quad Case 1: The point representing w is the origin. That is, $a=0$ and $b=0$.

In this case, explain why $L(z)=(a+b i) z$ has the geometric effect of rotation by $\arg (a+b i)$ and dilation by $|a+b i|$.
b. Case 2: The point representing w lies on the positive real axis. That is, $a>0$ and $b=0$.

In this case, explain why $L(z)=(a+b i) z$ has the geometric effect of rotation by $\arg (a+b i)$ and dilation by $|a+b i|$.
c. Case 3: The point representing w lies on the negative real axis. That is, $a<0$ and $b=0$.

In this case, explain why $L(z)=(a+b i) z$ has the geometric effect of rotation by $\arg (a+b i)$ and dilation by $|a+b i|$.
d. Case 4: The point representing w lies on the positive imaginary axis. That is, $a=0$ and $b>0$. In this case, explain why $L(z)=(a+b i) z$ has the geometric effect of rotation by $\arg (a+b i)$ and dilation by $|a+b i|$.
e. Case 5: The point representing w lies on the negative imaginary axis. That is, $a=0$ and $b<0$. In this case, explain why $L(z)=(a+b i) z$ has the geometric effect of rotation by $\arg (a+b i)$ and dilation by $|a+b i|$.
f. \quad Case 6: The point representing $w=a+b i$ lies in the second quadrant. That is, $a<0$ and $b>0$. Points representing , $z, a z,(b i) z$, and $w z=a z+(b i) z$ are shown in the figure below.

For convenience, rename the origin O and let $P=w, Q=a, R=w z, S=a z$, and $T=z$, as shown below. Let $m(\angle P O Q)=\theta$.

i. Argue that $\triangle O P Q \sim \triangle O R S$.
ii. Express the argument of $a z$ in terms of $\arg (z)$.
iii. Express $\arg (w)$ in terms of θ, where $\theta=m(\angle P O Q)$.
iv. Explain why $\arg (w z)=\arg (a z)-\theta$.
v. Combine your responses from parts (ii), (iii) and (iv) to express $\arg (w z)$ in terms of $\arg (z)$ and $\arg (w)$.
g. Case 7: The point representing $w=a+b i$ lies in the third quadrant. That is, $a<0$ and $b<0$. Points representing , $z, a z,(b i) z$, and $w z=a z+(b i) z$ are shown in the figure below.

For convenience, rename the origin O and let $P=w, Q=a, R=w z, S=a z$, and $T=z$, as shown below. Let $m(\angle P O Q)=\theta$.

i. Argue that $\triangle O P Q \sim \triangle O R S$.
ii. Express the argument of $a z$ in terms of $\arg (z)$.
iii. Express $\arg (w)$ in terms of θ, where $\theta=m(\angle P O Q)$.
iv. Explain why $\arg (w z)=\arg (a z)+\theta$.
v. Combine your responses from parts (ii), (iii), and (iv) to express $\arg (w z)$ in terms of $\arg (z)$ and $\arg (w)$.
h. Case 8: The point representing $w=a+b i$ lies in the fourth quadrant. That is, $a>0$ and $b<0$. Points representing , $z, a z,(b i) z$, and $w z=a z+(b i) z$ are shown in the figure below.

For convenience, rename the origin O, and let $P=w, Q=a, R=w z, S=a z$, and $T=z$, as shown below. Let $m(\angle P O Q)=\theta$.

i. Argue that $\triangle O P Q \sim \triangle O R S$.
ii. Express $\arg (w)$ in terms of θ, where $\theta=m(\angle P O Q)$.
iii. Explain why $m(\angle Q O R)=\theta-\arg (z)$.
iv. Express $\arg (w z)$ in terms of $m(\angle Q O R)$
v. Combine your responses from parts (ii), (iii), and (iv) to express $\arg (w z)$ in terms of $\arg (z)$ and $\arg (w)$.
2. Summarize the results of Problem 1, parts (a)-(h) and the lesson.
3. Find a linear transformation L that will have the geometric effect of rotation by the specified amount without dilating.
a. 45° counterclockwise
b. 60° counterclockwise
c. 180° counterclockwise
d. 120° counterclockwise
e. 30° clockwise
f. 90° clockwise
g. 180° clockwise
h. 135° clockwise
4. Suppose that we have linear transformations L_{1} and L_{2} as specified below. Find a formula for $L_{2}\left(L_{1}(z)\right)$ for complex numbers z.
a. $\quad L_{1}(z)=(1+i) z$ and $L_{2}(z)=(1-i) z$
b. $\quad L_{1}(z)=(3-2 i) z$ and $L_{2}(z)=(2+3 i) z$
c. $\quad L_{1}(z)=(-4+3 i) z$ and $L_{2}(z)=(-3-i) z$
d. $\quad L_{1}(z)=(a+b i) z$ and $L_{2}(z)=(c+d i) z$ for real numbers a, b, c and d.

