Lesson 16: Representing Reflections with Transformations

Classwork

Opening Exercise

a. Find a transformation $R_{\left(0,45^{\circ}\right)}: \mathbb{C} \rightarrow \mathbb{C}$ that rotates a point represented by the complex number z by 45° counterclockwise in the coordinate plane, but does not produce a dilation.
b. Find a transformation $R_{\left(0,-45^{\circ}\right)}: \mathbb{C} \rightarrow \mathbb{C}$ that rotates a point represented by the complex number z by 45° clockwise in the coordinate plane, but does not produce a dilation.
c. Find a transformation $r_{x \text {-axis }}: \mathbb{C} \rightarrow \mathbb{C}$ that reflects a point represented by the complex number z across the x-axis.

Discussion

We want to find a transformation $r_{\ell}: \mathbb{C} \rightarrow \mathbb{C}$ that reflects a point representing a complex number z across the diagonal line ℓ with equation $y=x$.

Exercises

1. The number z in the figure used in the discussion above is the complex number $1+5 i$. Compute $r_{\ell}(1+5 i)$ and plot it below.
2. We know from previous courses that the reflection of a point (x, y) across the line with equation $y=x$ is the point (y, x). Does this agree with our result from the previous discussion?
3. We now want to find a formula for the transformation of reflection across the line ℓ that makes a 60° angle with the positive x-axis. Find formulas to represent each component of the transformation, and use them to find one formula that represents the overall transformation.

Lesson Summary

Let ℓ be a line through the origin that contains the terminal ray of a rotation of the x-axis by θ. Then reflection across line ℓ can be done by the following sequence of transformations:

- Rotation by $-\theta$ about the origin.
- Reflection across the x-axis.
- Rotation by θ about the origin.

Problem Set

1. Find a formula for the transformation of reflection across the line ℓ with equation $y=-x$.
2. Find the formula for the sequence of transformations comprising reflection across the line with equation $y=x$ and then rotation by 180° about the origin.
3. Compare your answers to Problems 1 and 2. Explain what you find.
4. Find a formula for the transformation of reflection across the line ℓ that makes a -30° angle with the positive x-axis.
5. Max observed that when reflecting a complex number, $z=a+b i$ about the line $y=x$, that a and b are reversed, which is similar to how we learned to find an inverse function. Will Max's observation also be true when the line $y=-x$ is used, where $a=-b$ and $=-a$? Give an example to show his assumption is either correct or incorrect.
6. For reflecting a complex number, $z=a+b i$ about the line $y=2 x$, will Max's idea work if he makes $b=2 a$ and $a=\frac{b}{2}$? Use $z=1+4 i$ as an example to show whether or not it works.
7. What would the formula look like if you want to reflect a complex number about the line $y=m x$, where $m>0$?
