Lesson 17: The Geometric Effect of Multiplying by a Reciprocal

Classwork

Opening Exercise

Given $w=1+i$. What is $\arg (w)$ and $|w|$? Explain how you got your answer.

Exploratory Challenge 1/Exercises 1-9

1. Describe the geometric effect of the transformation $L(z)=(1+i) z$.
2. Describe a way to undo the effect of the transformation $L(z)=(1+i) z$.
3. Given that $0 \leq \arg (z)<2 \pi$ for any complex number, how could you describe any clockwise rotation of θ as an argument of a complex number?
4. Write a complex number in polar form that describes a rotation and dilation that will undo multiplication by $(1+i)$, and then convert it to rectangular form.
5. In a previous lesson you learned that to undo multiplication by $1+i$, you would multiply by the reciprocal $\frac{1}{1+i}$. Write the complex number $\frac{1}{1+i}$ in rectangular form $z=a+b i$ where a and b are real numbers.
6. How do your answers to Exercises 4 and 5 compare? What does that tell you about the geometric effect of multiplication by the reciprocal of a complex number?
7. Jimmy states the following:

Multiplication by $\frac{1}{a+b i}$ has the reverse geometric effect of multiplication by $+b i$.
Do you agree or disagree? Use your work on the previous exercises to support your reasoning.
8. Show that the following statement is true when $z=2-2 \sqrt{3} i$:

The reciprocal of a complex number Z with modulus r and $\operatorname{argument} \theta$ is $\frac{1}{z}$ with modulus $\frac{1}{r}$ and argument $2 \pi-\theta$.
9. Explain using transformations why $z \cdot \frac{1}{z}=1$.

Exploratory Challenge 2/Exercise 10

10. Complete the graphic organizer below to summarize your work with complex numbers so far.

Operation	Geometric Transformation	Example. Illustrate algebraically and geometrically Let $z=3-3 i$ and $w=-2 \boldsymbol{i}$
Addition $z+w$		
Subtraction $z-w$		
Conjugate of z		
Meciprocal of z		
Multiplication w z		

Exercises 11-13

Let $z=-1+i$ and let $w=2 i$. Describe each complex number as a transformation of z and then write the number in rectangular form.
11. $w \bar{Z}$
12. $\frac{1}{\bar{Z}}$
13. $\overline{w+z}$

Problem Set

1. Describe the geometric effect of multiplying z by the reciprocal of each complex number listed below.
a. $\quad w_{1}=3 \mathrm{i}$
b. $\quad w_{2}=-2$
c. $w_{3}=\sqrt{3}+i$
d. $w_{4}=1-\sqrt{3} i$
2. Let $z=-2-2 \sqrt{3} i$. Show that the geometric transformations you described in Problem 1 really produce the correct complex number by performing the indicated operation and determining the argument and modulus of each number.
a. $\frac{-2-2 \sqrt{3} i}{w_{1}}$
b. $\frac{-2-2 \sqrt{3} i}{w_{2}}$
c. $\frac{-2-2 \sqrt{3} i}{w_{3}}$
d. $\frac{-2-2 \sqrt{3} i}{w_{4}}$
3. In Exercise 12 of this lesson you described the complex number $\frac{1}{\bar{z}}$ as a transformation of z for a specific complex number z. Show that this transformation always produces a dilation of $z=a+b i$.
4. Does $L(z)=\frac{1}{z}$ satisfy the conditions that $L(z+w)=L(z)+L(w)$ and $L(m z)=m L(z)$ which makes it a linear transformation? Justify your answer.
5. Show that $L(z)=w\left(\overline{\frac{1}{w} z}\right)$ describes a reflection of z about the line containing the origin and w for $z=3 i$ and $w=1+i$.
6. Describe the geometric effect of each transformation function on z where z, w, and a are complex numbers.
a. $\quad L_{1}(z)=\frac{z-w}{a}$
b. $\quad L_{2}(z)=\overline{\left(\frac{z-w}{a}\right)}$
c. $\quad L_{3}(z)=a \overline{\left(\frac{z-w}{a}\right)}$
d. $\quad L_{3}(z)=a \overline{\left(\frac{z-w}{a}\right)}+w$
7. Verify your answers to Problem 6 if $z=1-i, w=2 i$, and $a=-1-i$.
a. $\quad L_{1}(z)=\frac{z-w}{a}$
b. $\quad L_{2}(z)=\overline{\left(\frac{z-w}{a}\right)}$
c. $\quad L_{3}(z)=a \overline{\left(\frac{z-w}{a}\right)}$
d. $\quad L_{3}(z)=a \overline{\left(\frac{z-w}{a}\right)}+w$
