Lesson 17: The Geometric Effect of Multiplying by a Reciprocal

Classwork

Opening Exercise

Given w = 1 + i. What is arg(w) and |w|? Explain how you got your answer.

Exploratory Challenge 1/Exercises 1–9

- 1. Describe the geometric effect of the transformation L(z) = (1 + i)z.
- 2. Describe a way to undo the effect of the transformation L(z) = (1 + i)z.
- 3. Given that $0 \le \arg(z) < 2\pi$ for any complex number, how could you describe any clockwise rotation of θ as an argument of a complex number?
- 4. Write a complex number in polar form that describes a rotation and dilation that will undo multiplication by (1 + i), and then convert it to rectangular form.

Lesson 17: Date: The Geometric Effect of Multiplying by a Reciprocal 1/30/15

- 5. In a previous lesson you learned that to undo multiplication by 1 + i, you would multiply by the reciprocal $\frac{1}{1+i}$. Write the complex number $\frac{1}{1+i}$ in rectangular form z = a + bi where a and b are real numbers.
- 6. How do your answers to Exercises 4 and 5 compare? What does that tell you about the geometric effect of multiplication by the reciprocal of a complex number?
- 7. Jimmy states the following:

Multiplication by $\frac{1}{a+bi}$ has the reverse geometric effect of multiplication by + bi. Do you agree or disagree? Use your work on the previous exercises to support your reasoning.

8. Show that the following statement is true when $z = 2 - 2\sqrt{3}i$: The reciprocal of a complex number z with modulus r and argument θ is $\frac{1}{z}$ with modulus $\frac{1}{r}$ and argument $2\pi - \theta$.

9. Explain using transformations why $z \cdot \frac{1}{z} = 1$.

Exploratory Challenge 2/Exercise 10

10. Complete the graphic organizer below to summarize your work with complex numbers so far.

Operation	Geometric Transformation	Example. Illustrate algebraically and geometrically Let $z = 3 - 3i$ and $w = -2i$
Addition z + w		
Subtraction z – w		
Conjugate of z		
Multiplication w·z		
Reciprocal of z		
Division <u>w</u> z		

Lesson 17: Date: The Geometric Effect of Multiplying by a Reciprocal 1/30/15

Exercises 11–13

Let z = -1 + i and let w = 2i. Describe each complex number as a transformation of z and then write the number in rectangular form.

11. w*ī*

12. $\frac{1}{\bar{z}}$

13. $\overline{w+z}$

The Geometric Effect of Multiplying by a Reciprocal 1/30/15

Problem Set

- 1. Describe the geometric effect of multiplying *z* by the reciprocal of each complex number listed below.
 - a. $w_1 = 3i$
 - b. $w_2 = -2$
 - c. $w_3 = \sqrt{3} + i$
 - d. $w_4 = 1 \sqrt{3}i$
- 2. Let $z = -2 2\sqrt{3}i$. Show that the geometric transformations you described in Problem 1 really produce the correct complex number by performing the indicated operation and determining the argument and modulus of each number.
 - a. $\frac{-2-2\sqrt{3}i}{w_1}$ b. $\frac{-2-2\sqrt{3}i}{w_1}$
 - C. $\frac{-2-2\sqrt{3}i}{2}$
 - d. $\frac{-2-2\sqrt{3}i}{\cdots}$
- 3. In Exercise 12 of this lesson you described the complex number $\frac{1}{z}$ as a transformation of z for a specific complex number z. Show that this transformation always produces a dilation of z = a + bi.
- 4. Does $L(z) = \frac{1}{z}$ satisfy the conditions that L(z + w) = L(z) + L(w) and L(mz) = mL(z) which makes it a linear transformation? Justify your answer.
- 5. Show that $L(z) = w\left(\frac{1}{w}z\right)$ describes a reflection of z about the line containing the origin and w for z = 3i and w = 1 + i.
- 6. Describe the geometric effect of each transformation function on *z* where *z*, *w*, and *a* are complex numbers.

a.
$$L_1(z) = \frac{z-w}{a}$$

b. $L_2(z) = \overline{\left(\frac{z-w}{a}\right)}$
c. $L_3(z) = a \overline{\left(\frac{z-w}{a}\right)}$
d. $L_3(z) = a \overline{\left(\frac{z-w}{a}\right)} + w$

- 7. Verify your answers to Problem 6 if z = 1 i, w = 2i, and a = -1 i.
 - a. $L_1(z) = \frac{z-w}{a}$

The Geometric Effect of Multiplying by a Reciprocal 1/30/15

PRECALCULUS AND ADVANCED TOPICS

b.
$$L_2(z) = \overline{\left(\frac{z-w}{a}\right)}$$

c.
$$L_3(z) = a \overline{\left(\frac{z-w}{a}\right)}$$

d.
$$L_3(z) = a \overline{\left(\frac{z-w}{a}\right)} + w$$

The Geometric Effect of Multiplying by a Reciprocal 1/30/15

