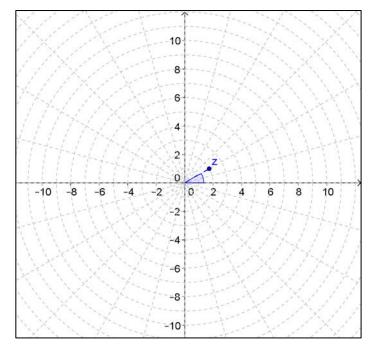
Lesson 19: Exploiting the Connection to Trigonometry

Classwork

Opening Exercise

A polar grid is shown below. The grid is formed by rays from the origin at equal rotation intervals and concentric circles centered at the origin. The complex number $z = \sqrt{3} + i$ is graphed on this polar grid.



a. Use the polar grid to identify the modulus and argument of *z*.

b. Graph the next three powers of *z* on the polar grid. Explain how you got your answers.

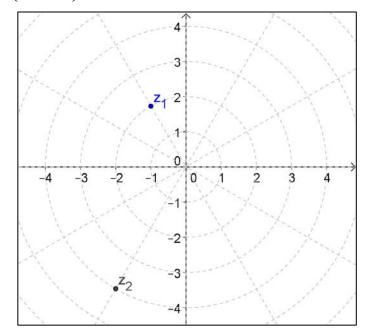
Exploiting the Connection to Trigonometry 1/30/15

Power of z	Polar Form	Rectangular Form
$\sqrt{3} + i$		
$\left(\sqrt{3}+i\right)^2$		
$\left(\sqrt{3}+i\right)^3$		
$\left(\sqrt{3}+i\right)^4$		

c. Write the polar form of the number in the table below, and then rewrite it in rectangular form.

Exercises 1–3

The complex numbers $z_2 = \left(-1 + \sqrt{3}i\right)^2$ and z_1 are graphed below.



- 1. Use the graph to help you write the numbers in polar and rectangular form.
- 2. Describe how the modulus and argument of $z_1 = -1 + \sqrt{3i}$ are related to the modulus and argument of $z_2 = (-1 + \sqrt{3i})^2$.

Exploiting the Connection to Trigonometry 1/30/15

PRECALCULUS AND ADVANCED TOPICS

3. Why could we call $-1 + \sqrt{3}i$ a square root of $-2 - 2\sqrt{3}i$?

Example 1: Find the Two Square Roots of a Complex Number

Find both of the square roots of $-2 - 2\sqrt{3}i$.

PRECALCULUS AND ADVANCED TOPICS

Exercises 4–6

4. Find the cube roots of $-2 = 2\sqrt{3}i$.

5. Find the square roots of 4*i*.

6. Find the cube roots of 8.

Exploiting the Connection to Trigonometry 1/30/15

Lesson Summary

Given a complex number z with modulus r and argument θ , the n^{th} roots of z are given by

$$\sqrt[n]{r}\left(\cos\left(\frac{\theta}{n}+\frac{2\pi k}{n}\right)+i\sin\left(\frac{\theta}{n}+\frac{2\pi k}{n}\right)\right)$$

for integers k and n such that n > 0 and $0 \le k < n$.

Problem Set

- 1. For each complex number what is z^2 ?
 - a. $1 + \sqrt{3}i$
 - b. 3-3*i*
 - c. 4*i*

d.
$$-\frac{\sqrt{3}}{2} + \frac{1}{2}i$$

- e. $\frac{1}{9} + \frac{1}{9}i$
- f. -1
- 2. For each complex number, what are the square roots of z?
 - a. $1 + \sqrt{3}i$
 - b. 3-3*i*
 - c. 4*i*

d.
$$-\frac{\sqrt{3}}{2} + \frac{1}{2}$$

e.
$$\frac{1}{9} + \frac{1}{9}i$$

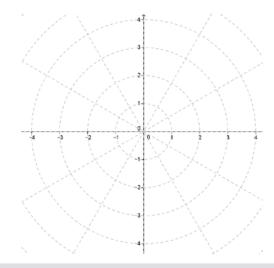
- f. -1
- 3. For each complex number, graph z, z^2 , and z^3 on a polar grid.

a.
$$2\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$$

- b. $3(\cos(210^\circ) + i\sin(210^\circ))$
- c. $2\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$
- d. $\cos(\pi) + i\sin(\pi)$

e.
$$4\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)$$

f. $\frac{1}{2}(\cos(60^\circ) + i\sin(60^\circ))$



Lesson 19: Date: Exploiting the Connection to Trigonometry 1/30/15

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.</u>

PRECALCULUS AND ADVANCED TOPICS

- 4. What are the cube roots of -3i?
- 5. What are the fourth roots of 64?
- 6. What are the square roots of -4 4i?
- 7. Find the square roots of -5. Show that the square roots satisfy the equation $x^2 + 5 = 0$.
- 8. Find the cube roots of 27. Show that the cube roots satisfy the equation $x^3 27 = 0$.

