Lesson 20: Exploiting the Connection to Cartesian Coordinates

Classwork

Opening Exercise

a. Find a complex number w so that the transformation $L_{1}(z)=w z$ produces a clockwise rotation by 1° about the origin with no dilation
b. Find a complex number w so that the transformation $L_{2}(z)=w z$ produces a dilation with scale factor 0.1 with no rotation.

Exercises 1-4

1.

a. Find values of a and b so that $L_{1}(x, y)=(a x-b y, b x+a y)$ has the effect of dilation with scale factor 2 and no rotation.
b. Evaluate $L_{1}\left(L_{1}(x, y)\right)$, and identify the resulting transformation.
2.
a. Find values of a and b so that $L_{2}(x, y)=(a x-b y, b x+a y)$ has the effect of rotation about the origin by 180° counterclockwise and no dilation.
b. Evaluate $L_{2}\left(L_{2}(x, y)\right)$, and identify the resulting transformation.
3.
a. Find values of a and b so that $L_{3}(x, y)=(a x-b y, b x+a y)$ has the effect of rotation about the origin by 90° counterclockwise and no dilation.
b. Evaluate $L_{3}\left(L_{3}(x, y)\right)$, and identify the resulting transformation.
4.
a. Find values of a and b so that $L_{3}(x, y)=(a x-b y, b x+a y)$ has the effect of rotation about the origin by 45° counterclockwise and no dilation.
b. Evaluate $L_{4}\left(L_{4}(x, y)\right)$, and identify the resulting transformation.

Exercises 5-6

5. The figure below shows a quadrilateral with vertices $A(0,0), B(1,0), C(3,3)$, and $D(0,3)$.
a. Transform each vertex under $L_{5}=(3 x+y, 3 y-x)$, and plot the transformed vertices on the figure.

b. Does L_{5} represent a rotation and dilation? If so, estimate the amount of rotation and the scale factor from your figure.
c. If L_{5} represents a rotation and dilation, calculate the amount of rotation and the scale factor from the formula for L_{5}. Do your numbers agree with your estimate in part (b)? If not, explain why there are no values of a and b so that $L_{5}(x, y)=(a x-b y, b x+a y)$.
6. The figure below shows a figure with vertices $A(0,0), B(1,0), C(3,3)$, and $D(0,3)$.
a. Transform each vertex under $L_{6}=(2 x+2 y, 2 x-2 y)$, and plot the transformed vertices on the figure.

b. Does L_{6} represent a rotation and dilation? If so, estimate the amount of rotation and the scale factor from your figure.
c. If L_{5} represents a rotation and dilation, calculate the amount of rotation and the scale factor from the formula for L_{6}. Do your numbers agree with your estimate in part (b)? If not, explain why there are no values of a and b so that $L_{6}(x, y)=(a x-b y, b x+a y)$.

Lesson Summary

For real numbers a and b, the transformation $L(x, y)=(a x-b y, b x+a y)$ corresponds to a counterclockwise rotation by $\arg (a+b i)$ about the origin and dilation with scale factor $\sqrt{a^{2}+b^{2}}$.

Problem Set

1. Find real numbers a and b so that the transformation $L(x, y)=(a x-b y, b x+a y)$ produces the specified rotation and dilation.
a. Rotation by 270° counterclockwise and dilation by scale factor $\frac{1}{2}$.
b. Rotation by 135° counterclockwise and dilation by scale factor $\sqrt{2}$.
c. Rotation by 45° clockwise and dilation by scale factor 10 .
d. Rotation by 540° counterclockwise and dilation by scale factor 4 .
2. Determine if the following transformations represent a rotation and dilation. If so, identify the scale factor and the amount of rotation.

a. $\quad L(x, y)=(3 x+4 y, 4 x+3 y)$
b. $\quad L(x, y)=(-5 x+12 y,-12 x-5 y)$
c. $\quad L(x, y)=(3 x+3 y,-3 y+3 x)$
3. Grace and Lily have a different point of view about the transformation on cube $A B C D$ that is shown above. Grace states that it is a reflection about the imaginary axis and a dilation of factor of 2 . However, Lily argues it should be a 90° counterclockwise rotation about the origin with a dilation of a factor of 2.
a. Who is correct? Justify your answer.
b. Represent the above transformation in the form $L(x, y)=(a x-b y, b x+a y)$.
4. Grace and Lily still have a different point of view on this transformation on triangle $A B C$ shown above. Grace states that it is reflected about the real axis first, then reflected about the imaginary axis, and then is dilated with a factor of 2 . However, Lily asserts that it is a 180° counterclockwise rotation about the origin with a dilation of a factor of 2.

a. Who is correct? Justify your answer.
b. Represent the above transformation in the form $L(x, y)=(a x-b y, b x+a y)$.
5. Given $z=\sqrt{3}+i$.
a. Find the complex number w that will cause a rotation with the same number of degrees as z without a dilation.
b. Can you come up with a general formula $L(x, y)=(a x-b y, b x+a y)$ for any complex number $z=x+y i$ to represent this condition?
