

Lesson 21: The Hunt for Better Notation

Classwork

Opening Exercise

Suppose that $L_1(x, y) = (2x - 3y, 3x + 2y)$ and $L_2(x, y) = (3x + 4y, -4y + 3x)$. Find the result of performing L_1 and then L_2 on a point (p, q). That is, find $L_2(L_1(p, q))$.

Exercises 1–2

1. Calculate each of the following products.

a.
$$\begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

b.
$$\begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ -4 \end{pmatrix}$$

c.
$$\begin{pmatrix} 2 & -4 \\ 5 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

engage^{ny}

2. Find a value of k so that
$$\begin{pmatrix} 1 & 2 \\ k & 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 11 \end{pmatrix}$$
.

Exercises 3–9

- 3. Find a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ so that we can represent the transformation L(x, y) = (2x 3y, 3x + 2y) by $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.
- 4. If a transformation $L\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} a & b\\ c & d \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}$ has the geometric effect of rotation and dilation, do you know about the values *a*, *b*, *c*, and *d*?

5. Describe the form of a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ so that the transformation $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ has the geometric effect of only dilation by a scale factor r.

6. Describe the form of a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ so that the transformation $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ has the geometric effect of only rotation by θ . Describe the matrix in terms of θ .

COMMON CORE

Date:

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

engage^{ny}

S.110

7. Describe the form of a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ so that the transformation $L\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ has the geometric effect of rotation by θ and dilation with scale factor r. Describe the matrix in terms of θ and r.

- 8. Suppose that we have a transformation $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.
 - a. Does this transformation have the geometric effect of rotation and dilation?

b. Transform each of the points $A = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and $D = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and plot the images in the plane shown.

9. Describe the geometric effect of the transformation $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

The Hunt for Better Notation 1/30/15

Lesson 21:

Date:

engage

S.111

Lesson Summary

For real numbers a, b, c, and d, the transformation L(x, y) = (ax + by, cx + dy) can be represented using matrix multiplication by $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$, where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$ and the $\begin{pmatrix} x \\ y \end{pmatrix}$ represents the point (x, y) in the plane.

- The transformation is a counterclockwise rotation by θ if and only if the matrix representation is $L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\cos(\theta) & -\sin(\theta)\\\sin(\theta) & \cos(\theta)\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}.$
- The transformation is a dilation with scale factor k if and only if the matrix representation is $L\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

The transformation is a counterclockwise rotation by $\arg(a + bi)$ and dilation with scale factor |a + bi| if and only if the matrix representation is $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. If we let r = |a + bi| and $\theta = \arg(a + bi)$, then the matrix representation is $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r\cos(\theta) & -r\sin(\theta) \\ r\sin(\theta) & r\cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

Problem Set

1. Perform the indicated multiplication.

a.
$$\begin{pmatrix} 1 & 2 \\ 4 & 8 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

b. $\begin{pmatrix} 3 & 5 \\ -2 & -6 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \end{pmatrix}$
c. $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 6 \\ 8 \end{pmatrix}$
d. $\begin{pmatrix} 5 & 7 \\ 4 & 9 \end{pmatrix} \begin{pmatrix} 10 \\ 100 \end{pmatrix}$
e. $\begin{pmatrix} 4 & 2 \\ 3 & 7 \end{pmatrix} \begin{pmatrix} -3 \\ 1 \end{pmatrix}$
f. $\begin{pmatrix} 6 & 4 \\ 9 & 6 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$
g. $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
h. $\begin{pmatrix} \pi & 1 \\ 1 & -\pi \end{pmatrix} \begin{pmatrix} 10 \\ 7 \end{pmatrix}$

- 2. Find a value of k so that $\begin{pmatrix} k & 3 \\ 4 & k \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}$.
- 3. Find values of k and m so that $\begin{pmatrix} k & 3 \\ -2 & m \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ -10 \end{pmatrix}$.

Lesson 21:

Date:

- 4. Find values of k and m so that $\begin{pmatrix} 1 & 2 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} k \\ m \end{pmatrix} = \begin{pmatrix} 0 \\ -9 \end{pmatrix}$.
- 5. Write the following transformations using matrix multiplication.
 - a. L(x, y) = (3x 2y, 4x 5y)
 - b. L(x, y) = (6x + 10y, -2x + y)
 - c. L(x, y) = (25x + 10y, 8x 64y)
 - d. $L(x, y) = (\pi x y, -2x + 3y)$
 - e. L(x, y) = (10x, 100x)
 - f. L(x, y) = (2y, 7x)
- 6. Identify whether or not the following transformations have the geometric effect of rotation only, dilation only, rotation and dilation only, or none of these.
 - a. $L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}3 & -2\\4 & -5\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ b. $L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}42 & 0\\0 & 42\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ c. $L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-4 & -2\\2 & -4\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ d. $L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}5 & -1\\-1 & 5\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ e. $L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-7 & 1\\1 & 7\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ f. $L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}0 & -2\\2 & 0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$
- 7. Create a matrix representation of a linear transformation that has the specified geometric effect.
 - a. Dilation by a factor of 4 and no rotation.
 - b. Rotation by 180° and no dilation.
 - c. Rotation by $-\frac{\pi}{2}$ rad and dilation by a scale factor of 3.
 - d. Rotation by 30° and dilation by a scale factor of 4.
- 8. Identify the geometric effect of the following transformations. Justify your answer.

a.
$$L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$$

b. $L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}0 & -5\\5 & 0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$
c. $L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-10 & 0\\0 & -10\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$
d. $L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}6 & 6\sqrt{3}\\-6\sqrt{3} & 6\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$

S.113

Lesson 21:

Date:

