Lesson 21: The Hunt for Better Notation

Classwork

Opening Exercise

Suppose that $L_{1}(x, y)=(2 x-3 y, 3 x+2 y)$ and $L_{2}(x, y)=(3 x+4 y,-4 y+3 x)$.
Find the result of performing L_{1} and then L_{2} on a point (p, q). That is, find $L_{2}\left(L_{1}(p, q)\right)$.

Exercises 1-2

1. Calculate each of the following products.
a. $\quad\left(\begin{array}{cc}3 & -2 \\ -1 & 4\end{array}\right)\binom{1}{5}$
b. $\quad\left(\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right)\binom{4}{-4}$
c. $\quad\left(\begin{array}{ll}2 & -4 \\ 5 & -1\end{array}\right)\binom{3}{-2}$
2. Find a value of k so that $\left(\begin{array}{ll}1 & 2 \\ k & 1\end{array}\right)\binom{3}{-1}=\binom{1}{11}$.

Exercises 3-9

3. Find a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ so that we can represent the transformation $L(x, y)=(2 x-3 y, 3 x+2 y)$ by $L\binom{x}{y}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}$.
4. If a transformation $L\binom{x}{y}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}$ has the geometric effect of rotation and dilation, do you know about the values a, b, c, and d ?
5. Describe the form of a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ so that the transformation $L\binom{x}{y}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}$ has the geometric effect of only dilation by a scale factor r.
6. Describe the form of a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ so that the transformation $L\binom{x}{y}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}$ has the geometric effect of only rotation by θ. Describe the matrix in terms of θ.
7. Describe the form of a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ so that the transformation $L\binom{x}{y}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}$ has the geometric effect of rotation by θ and dilation with scale factor r. Describe the matrix in terms of θ and r.
8. Suppose that we have a transformation $L\binom{x}{y}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\binom{x}{y}$.
a. Does this transformation have the geometric effect of rotation and dilation?
b. Transform each of the points $A=\binom{0}{0}, B=\binom{1}{0}, C=\binom{1}{1}$, and $D=\binom{0}{1}$ and plot the images in the plane shown.

9. Describe the geometric effect of the transformation $L\binom{x}{y}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{x}{y}$.

Lesson Summary

For real numbers a, b, c, and d, the transformation $L(x, y)=(a x+b y, c x+d y)$ can be represented using matrix multiplication by $L\binom{x}{y}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}$, where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}$ and the $\binom{x}{y}$ represents the point (x, y) in the plane.

- The transformation is a counterclockwise rotation by θ if and only if the matrix representation is
$L\binom{x}{y}=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)\binom{x}{y}$.
- The transformation is a dilation with scale factor k if and only if the matrix representation is
$L\binom{x}{y}=\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)\binom{x}{y}$.
- The transformation is a counterclockwise rotation by $\arg (a+b i)$ and dilation with scale factor $|a+b i|$ if and only if the matrix representation is $L\binom{x}{y}=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)\binom{x}{y}$. If we let $r=|a+b i|$ and $\theta=\arg (a+b i)$, then the matrix representation is $L\binom{x}{y}=\left(\begin{array}{cc}r \cos (\theta) & -r \sin (\theta) \\ r \sin (\theta) & r \cos (\theta)\end{array}\right)\binom{x}{y}$.

Problem Set

1. Perform the indicated multiplication.
a. $\left(\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right)\binom{3}{-2}$
b. $\quad\left(\begin{array}{cc}3 & 5 \\ -2 & -6\end{array}\right)\binom{2}{4}$
c. $\quad\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{6}{8}$
d. $\left(\begin{array}{ll}5 & 7 \\ 4 & 9\end{array}\right)\binom{10}{100}$
e. $\left(\begin{array}{ll}4 & 2 \\ 3 & 7\end{array}\right)\binom{-3}{1}$
f. $\left(\begin{array}{ll}6 & 4 \\ 9 & 6\end{array}\right)\binom{2}{-3}$
g. $\quad\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)\binom{x}{y}$
h. $\left(\begin{array}{cc}\pi & 1 \\ 1 & -\pi\end{array}\right)\binom{10}{7}$
2. Find a value of k so that $\left(\begin{array}{ll}k & 3 \\ 4 & k\end{array}\right)\binom{4}{5}=\binom{7}{6}$.
3. Find values of k and m so that $\left(\begin{array}{cc}k & 3 \\ -2 & m\end{array}\right)\binom{5}{4}=\binom{7}{-10}$.
4. Find values of k and m so that $\left(\begin{array}{cc}1 & 2 \\ -2 & 5\end{array}\right)\binom{k}{m}=\binom{0}{-9}$.
5. Write the following transformations using matrix multiplication.
a. $\quad L(x, y)=(3 x-2 y, 4 x-5 y)$
b. $\quad L(x, y)=(6 x+10 y,-2 x+y)$
c. $\quad L(x, y)=(25 x+10 y, 8 x-64 y)$
d. $\quad L(x, y)=(\pi x-y,-2 x+3 y)$
e. $L(x, y)=(10 x, 100 x)$
f. $L(x, y)=(2 y, 7 x)$
6. Identify whether or not the following transformations have the geometric effect of rotation only, dilation only, rotation and dilation only, or none of these.
a. $L\binom{x}{y}=\left(\begin{array}{ll}3 & -2 \\ 4 & -5\end{array}\right)\binom{x}{y}$
b. $\quad L\binom{x}{y}=\left(\begin{array}{cc}42 & 0 \\ 0 & 42\end{array}\right)\binom{x}{y}$
c. $\quad L\binom{x}{y}=\left(\begin{array}{cc}-4 & -2 \\ 2 & -4\end{array}\right)\binom{x}{y}$
d. $\quad L\binom{x}{y}=\left(\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right)\binom{x}{y}$
e. $\quad L\binom{x}{y}=\left(\begin{array}{cc}-7 & 1 \\ 1 & 7\end{array}\right)\binom{x}{y}$
f. $L\binom{x}{y}=\left(\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right)\binom{x}{y}$
7. Create a matrix representation of a linear transformation that has the specified geometric effect.
a. Dilation by a factor of 4 and no rotation.
b. Rotation by 180° and no dilation.
c. Rotation by $-\frac{\pi}{2}$ rad and dilation by a scale factor of 3 .
d. Rotation by 30° and dilation by a scale factor of 4 .
8. Identify the geometric effect of the following transformations. Justify your answer.
a. $L\binom{\mathrm{X}}{\mathrm{y}}=\left(\begin{array}{rr}-\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\end{array}\right)\binom{\mathrm{X}}{\mathrm{y}}$
b. $\quad L\binom{x}{y}=\left(\begin{array}{cc}0 & -5 \\ 5 & 0\end{array}\right)\binom{x}{y}$
c. $\quad L\binom{x}{y}=\left(\begin{array}{cc}-10 & 0 \\ 0 & -10\end{array}\right)\binom{x}{y}$
d. $\quad L\binom{x}{y}=\left(\begin{array}{cc}6 & 6 \sqrt{3} \\ -6 \sqrt{3} & 6\end{array}\right)\binom{x}{y}$
