

Lesson 27: Getting a Handle on New Transformations

Classwork

Opening Exercise

Explain the geometric effect of each matrix.

- a. $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$
- b. $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$
- c. $\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$
- d. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- e. $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- f. $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$

Example 1

Given the transformation $\begin{bmatrix} k & 0 \\ k & 1 \end{bmatrix}$ with k > 0:

a. Perform this transformation on the vertices of the unit square. Sketch the image and label the vertices.

- b. Calculate the area of the image using the dimensions of the image parallelogram.
- c. Confirm the area of the image using the determinant.
- d. Perform the transformation on $\begin{bmatrix} x \\ y \end{bmatrix}$.
- e. In order for two matrices to be equivalent, each of the corresponding elements must be equivalent. Given that, if the image of this transformation is $\begin{bmatrix} 5\\4 \end{bmatrix}$, find $\begin{bmatrix} x\\y \end{bmatrix}$.

Getting a Handle on New Transformations 1/30/15

enga

S.144

- f. Perform the transformation on $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Write the image matrix.
- g. Perform the transformation on the image again, and then repeat until the transformation has been performed four times on the image of the preceding matrix.

Exercise 1

- 1. Perform the transformation $\begin{bmatrix} k & 0 \\ 1 & k \end{bmatrix}$ with k > 1 on the vertices of the unit square.
 - a. What are the vertices of the image?
 - b. Calculate the area of the image.
 - c. If the image of the transformation on $\begin{bmatrix} x \\ y \end{bmatrix}$ is $\begin{bmatrix} -2 \\ -1 \end{bmatrix}$, find $\begin{bmatrix} x \\ y \end{bmatrix}$ in terms of k.

Example 2

Consider the matrix $L = \begin{bmatrix} 2 & 5 \\ -1 & 3 \end{bmatrix}$. For each real number $0 \le t \le 1$ consider the point (3 + t, 10 + 2t).

a. Find point A when t = 0.

Getting a Handle on New Transformations 1/30/15

PRECALCULUS AND ADVANCED TOPICS

- b. Find point *B* when t = 1.
- c. Show that for $t = \frac{1}{2}$, (3 + t, 10 + 2t) is the midpoint of \overline{AB} .

d. Show that for each value of t, (3 + t, 10 + 2t) is a point on the line through A and B.

e. Find *LA* and *LB*.

- f. What is the equation of the line through *LA* and *LB*?
- g. Show that $L\begin{bmatrix} 3+t\\ 10+2t \end{bmatrix}$ lies on the line through *LA* and *LB*.

S.146

Problem Set

- Perform the following transformation on the vertices of the unit square. Sketch the image, label the vertices, and 1. find the area of the image parallelogram.
 - $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ a.
 - $\begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix}$ b.

 - $\begin{bmatrix} 3 & 0 \\ 3 & 1 \end{bmatrix}$ c.
 - d. $\begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}$

 - e. $\begin{bmatrix} 3 & 0 \\ 3 & 3 \end{bmatrix}$
 - f. $\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$

 - $\begin{array}{c} 11 & 2 \\ g. & \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix} \\ h. & \begin{bmatrix} 2 & 0 \\ 2 & 3 \end{bmatrix} \end{array}$

 - i. $\begin{bmatrix} 3 & 0 \\ 3 & 5 \end{bmatrix}$

2. Given $\begin{bmatrix} k & 0 \\ k & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} kx \\ kx + y \end{bmatrix}$. Find $\begin{bmatrix} x \\ y \end{bmatrix}$ if the image of the transformation is the following: a. $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$ b. $\begin{bmatrix} -3\\2 \end{bmatrix}$ c. $\begin{bmatrix} 5\\-6 \end{bmatrix}$

3. Given $\begin{bmatrix} k & 0 \\ k & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} kx \\ kx + y \end{bmatrix}$. Find value of k so that: a. $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ and the image is $\begin{bmatrix} 24 \\ 22 \end{bmatrix}$ b. $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 27 \\ 2 \end{bmatrix}$ and the image is $\begin{bmatrix} 18 \\ 21 \end{bmatrix}$

4. Given $\begin{bmatrix} k & 0 \\ 1 & k \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} kx \\ x + ky \end{bmatrix}$. Find value of k so that: a. $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -4 \\ 5 \end{bmatrix}$ and the image is $\begin{bmatrix} -12 \\ 11 \end{bmatrix}$ b. $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{5}{3} \\ \frac{2}{-} \end{bmatrix}$ and image is $\begin{bmatrix} -15 \\ -\frac{1}{3} \end{bmatrix}$

Lesson 27: Date:

Getting a Handle on New Transformations 1/30/15

- Perform the following transformation on the vertices of the unit square. Sketch the image, label the vertices, and 5. find the area of the image parallelogram.
 - $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $\binom{0}{2}$ a.
 - $\begin{bmatrix} 3 & 0 \\ 1 & 3 \end{bmatrix}$ b.

 - $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ ן0 c. 2

 - $\begin{bmatrix} 2 & 0 \\ 4 & 2 \end{bmatrix}$ d.
 - e. $\begin{bmatrix} 4 & 0 \\ 2 & 4 \end{bmatrix}$
 - $\begin{bmatrix} 3 & 0 \\ 5 & 3 \end{bmatrix}$ f.
- Consider the matrix $L = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$. For each real number $o \le t \le 1$, consider the point (3 + 2t, 12 + 2t). 6.
 - Find the point *A* when t = 0. a.
 - b. Find the point *B* when t = 1.
 - Show that for $t = \frac{1}{2}$, (3 + 2t, 12 + 2t) is the midpoint of \overline{AB} . c.
 - Show that for each value of t, (3 + 2t, 12 + 2t) is a point on the line through A and B. d.
 - Find LA and LB. e.
 - f. What is the equation of the line through *LA* and *LB*?
 - Show that $L\begin{bmatrix} 3+2t\\ 12+2t \end{bmatrix}$ lies on the line through *LA* and *LB*. g.

