Lesson 28: When Can We Reverse a Transformation?

Classwork

Opening Exercise

Perform the operation $\left[\begin{array}{cc}3 & -2 \\ 1 & 1\end{array}\right]$ on the unit square.
a. State the vertices of the transformation.
b. Explain the transformation in words.
c. Find the area of the transformed figure.
d. If the original square was 2×2 instead of a unit square, how would the transformation change?
e. What is the area of the image? Explain how you know.

Example 1

What transformation reverses a pure dilation from the origin with a scale factor of k ?
a. Write the pure dilation matrix and multiply it by $\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$.
b. What values of a, b, c, and d would produce the identity matrix? (Hint: Write and solve a system of equations.)
c. Write the matrix and confirm that it reverses the pure dilation with a scale factor of k.

Exercises 1-3

Find the inverse matrix and verify.

1. $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
2. $\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$
3. $\left[\begin{array}{cc}-2 & -5 \\ 1 & 2\end{array}\right]$

Problem Set

1. In this lesson, we learned $R_{\theta} R_{-\theta}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Chad was saying that he found an easy way to find the inverse matrix, which is: $R_{-\theta}=\frac{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]}{R_{\theta}}$. His argument is that if we have $2 x=1$, then $x=\frac{1}{2}$.
a. Is Chad correct? Explain your reason.
b. If Chad is not correct, what is the correct way to find the inverse matrix?
2. Find the inverse matrix and verify it.
a. $\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$
b. $\left[\begin{array}{cc}-2 & -1 \\ 3 & 1\end{array}\right]$
c. $\left[\begin{array}{cc}3 & -3 \\ -2 & 2\end{array}\right]$
d. $\left[\begin{array}{cc}0 & 1 \\ -1 & 3\end{array}\right]$
e. $\left[\begin{array}{ll}4 & 1 \\ 2 & 1\end{array}\right]$
3. Find the starting point $\left[\begin{array}{l}x \\ y\end{array}\right]$ if
a. the point $\left[\begin{array}{l}4 \\ 2\end{array}\right]$ is the image of a pure dilation with a factor of 2 .
b. the point $\left[\begin{array}{l}4 \\ 2\end{array}\right]$ is the image of a pure dilation with a factor of $\frac{1}{2}$.
c. the point $\left[\begin{array}{c}-10 \\ 35\end{array}\right]$ is the image of a pure dilation with a factor of 5 .
d. the point $\left[\begin{array}{c}\frac{4}{9} \\ \frac{16}{21}\end{array}\right]$ is the image of a pure dilation with a factor of $\frac{2}{3}$.
4. Find the starting point if
a. $3+2 i$ is the image of a reflection about the real axis.
b. $3+2 i$ is the image of a reflection about the imaginary axis.
c. $3+2 i$ is the image of a reflection about the real axis and then the imaginary axis.
d. $\quad-3-2 i$ is the image of a π radians counterclockwise rotation.
5. Let's call the pure counterclockwise rotation of the matrix $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ as R_{θ}, and the "undo" of the pure rotation is $\left[\begin{array}{cc}\cos (-\theta) & -\sin (-\theta) \\ \sin (-\theta) & \cos (-\theta)\end{array}\right]$ as $R_{-\theta}$.
a. Simplify $\left[\begin{array}{cc}\cos (-\theta) & -\sin (-\theta) \\ \sin (-\theta) & \cos (-\theta)\end{array}\right]$.
b. What would you get if you multiply R_{θ} to $R_{-\theta}$?
c. Write the matrix if you want to rotate $\frac{\pi}{2}$ radians counterclockwise.
d. Write the matrix if you want to rotate $\frac{\pi}{2}$ radians clockwise.
e. Write the matrix if you want to rotate $\frac{\pi}{6}$ radians counterclockwise.
f. Write the matrix if you want to rotate $\frac{\pi}{4}$ radians counterclockwise.
g. If the point $\left[\begin{array}{l}0 \\ 2\end{array}\right]$ is the image of $\frac{\pi}{4}$ radians counterclockwise rotation, find the starting point $\left[\begin{array}{l}x \\ y\end{array}\right]$.
h. If the point $\left[\begin{array}{c}\frac{1}{2} \\ \frac{\sqrt{3}}{2}\end{array}\right]$ is the image of $\frac{\pi}{6}$ radians counterclockwise rotation, find the starting point $\left[\begin{array}{l}x \\ y\end{array}\right]$.
