Lesson 12: Matrix Multiplication Is Distributive and Associative

Classwork

Opening Exercise

Write the 3×3 matrix that would represent the transformation listed.
a. No change when multiplying (the multiplicative identity matrix)
b. No change when adding (the additive identity matrix)
c. A rotation about the x-axis of θ degrees
d. A rotation about the y-axis of θ degrees
e. A rotation about the z-axis of θ degrees
f. A reflection over the $x y$-plane
g. A reflection over the $y z$-plane
h. A reflection over the $x z$-plane
i. A reflection over $y=x$ in the $x y$-plane

Example 1

In three-dimensional space, let A represent a rotation of 90° about the x-axis, B represent a reflection about the $y z$ plane, and C represent a rotation of 180° about the z-axis. Let $X=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
a. As best you can, sketch a three-dimensional set of axes and the location of the point X.
b. Using only your geometric intuition, what are the coordinates of $B X$? $C X$? Explain your thinking.
c. Write down matrices B and C, and verify or disprove your answers to part (b).
d. What is the sum of $B X+C X$?
e. Write down matrix A, and compute $A(B X+C X)$.
f. Compute $A B$ and $A C$.
g. Compute $(A B) X,(A C) X$, and their sum. Compare your result to your answer to part (e). What do you notice?
h. In general, must $A(B+C)$ and $A B+A C$ have the same geometric effect on point, no matter what matrices A, B, and C are? Explain.

Exercises 1-2

1. Let $A=\left[\begin{array}{cc}x & z \\ y & w\end{array}\right], B=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$, and $C=\left[\begin{array}{ll}e & g \\ f & h\end{array}\right]$.
a. Write down the products $A B, A C$, and $A(B+C)$.
b. Verify that $A(B+C)=A B+A C$.
2. Suppose A, B, and C are 3×3 matrices, and X is a point in three-dimensional space.
a. Explain why the point $(A(B C)) X$ must be the same point as $((A B) C) X$.
b. Explain why matrix multiplication must be associative.
c. Verify using the matrices from Exercise 1 that $A(B C)=(A B) C$.

Problem Set

1. Let matrix $A=\left(\begin{array}{cc}3 & -2 \\ -1 & 0\end{array}\right)$, matrix $B=\left(\begin{array}{ll}4 & 4 \\ 3 & 9\end{array}\right)$, and matrix $C=\left(\begin{array}{cc}8 & 2 \\ 7 & -5\end{array}\right)$. Calculate the following:
a. $A B$
b. $A C$
c. $A(B+C)$
d. $A B+A C$
e. $\quad(A+B) C$
f. $A(B C)$
2. Apply each of the transformations you found in Problem 1 to the points $x=\binom{1}{1}, y=\binom{-3}{2}$, and $x+y$.
3. Let A, B, C, and D be any four square matrices of the same dimensions. Use the distributive property to evaluate the following:
a. $\quad(A+B)(C+D)$
b. $\quad(A+B)(A+B)$
c. What conditions need to be true for part (b) to equal $A A+2 A B+B B$?
4. Let A be a 2×2 matrix and B, C be the scalar matrices $B=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$, and $C=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$. Answer the following questions.
a. Evaluate the following:
i. $B C$
ii. $C B$
iii. $\quad B+C$
iv. $B-C$
b. Are your answers to part (a) what you expected? Why or why not?
c. Let $A=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$; does $A B=B A$? Does $A C=C A$?
d. What is $(A+B)(A+C)$? Write the matrix A with the letter and not in matrix form. How does this compare to $(x+2)(x+3)$?
e. With B and C given as above, is it possible to factor $A A-A-B C$?
5. Define the sum of any two functions with the same domain to be the function $f+g$ such that for each x in the domain of f and $g,(f+g)(x)=f(x)+g(x)$. Define the product of any two functions to be the function $f g$, such that for each x in the domain of f and $g,(f g)(x)=(f(x))(g(x))$.
Let f, g, and h be real-valued functions defined by the equations $f(x)=3 x+1, g(x)=-\frac{1}{2} x+2$, and $h(x)=x^{2}-4$.
a. Does $f(g+h)=f g+f h$?
b. Show that this is true for any three functions with the same domains.
c. Does $f \circ(g+h)=f \circ g+f \circ h$ for the functions described above?
