Lesson 8: Composition of Linear Transformations

Classwork

Opening Exercise

Compute the product $A B$ for the following pairs of matrices.
a. $\quad A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
b. $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
c. $\quad A=\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right], B=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$
d. $\quad A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
e. $A=\left[\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right], B=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$

Exploratory Challenge

1. For each pair of matrices A and B given below:
i. Describe the geometric effect of the transformation $L_{B}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=B \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$.
ii. Describe the geometric effect of the transformation $L_{A}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=A \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$.
iii. Draw the image of the unit square under the transformation $L_{B}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=B \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$.
iv. Draw the image of the transformed square under the transformation $L_{A}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=A \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$.
v. Describe the geometric effect on the unit square of performing first L_{B} then L_{A}.
vi. Compute the matrix product $A B$.
vii. Describe the geometric effect of the transformation $L_{A B}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=A B \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$.
a. $\quad A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
b. $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
c. $\quad A=\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right], B=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$
d. $\quad A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
e. $A=\left[\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right], B=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$
2. Make a conjecture about the geometric effect of the linear transformation produced by the matrix $A B$. Justify your answer.

Lesson Summary

The linear transformation produced by matrix $A B$ has the same geometric effect as the sequence of the linear transformation produced by matrix B followed by the linear transformation produced by matrix A.

That is, if matrices A and B produce linear transformations L_{A} and L_{B} in the plane, respectively, then the linear transformation $L_{A B}$ produced by the matrix $A B$ satisfies
$L_{A B}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=L_{A}\left(L_{B}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)\right)$.

Problem Set

1. Let A be the matrix representing a dilation of $\frac{1}{2}$, and let B be the matrix representing a reflection across the y-axis.
a. Write A and B.
b. Evaluate $A B$. What does this matrix represent?
c. Let $x=\left[\begin{array}{l}5 \\ 6\end{array}\right], y=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$, and $z=\left[\begin{array}{c}8 \\ -2\end{array}\right]$. Find $(A B) x,(A B) y$, and $(A B) z$.
2. Let A be the matrix representing a rotation of 30°, and let B be the matrix representing a dilation of 5 .
a. Write A and B.
b. Evaluate $A B$. What does this matrix represent?
c. Let $x=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Find $(A B) x$.
3. Let A be the matrix representing a dilation of 3 , and let B be the matrix representing a reflection across the line $y=x$.
a. Write A and B.
b. Evaluate $A B$. What does this matrix represent?
c. Let $x=\left[\begin{array}{c}-2 \\ 7\end{array}\right]$. Find $(A B) x$.
4. Let $A=\left[\begin{array}{ll}3 & 0 \\ 3 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
a. Evaluate $A B$.
b. Let $x=\left[\begin{array}{c}-2 \\ 2\end{array}\right]$. Find $(A B) x$.
c. Graph x and $(A B) x$.
5. Let $A=\left[\begin{array}{ll}\frac{1}{3} & 0 \\ 2 & \frac{1}{3}\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 1 \\ 1 & -3\end{array}\right]$.
a. Evaluate $A B$.
b. Let $x=\left[\begin{array}{l}0 \\ 3\end{array}\right]$. Find $(A B) x$.
c. Graph x and $(A B) x$.
6. Let $A=\left[\begin{array}{ll}2 & 2 \\ 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 2 \\ 2 & 2\end{array}\right]$.
a. Evaluate $A B$.
b. Let $x=\left[\begin{array}{c}3 \\ -2\end{array}\right]$. Find $(A B) x$.
c. Graph x and $(A B)$.
7. Let A, B, C be 2×2 matrices representing linear transformations.
a. What does $A(B C)$ represent?
b. Will the pattern established in part (a) be true no matter how many matrices are multiplied on the left?
c. Does $(A B) C$ represent something different from $A(B C)$? Explain.
8. Let $A B$ represent any composition of linear transformations in \mathbb{R}^{2}. What is the value of $(A B) x$ where $x=\left[\begin{array}{l}0 \\ 0\end{array}\right]$?
