Lesson 9: Composition of Linear Transformations

Classwork

Opening Exercise

Recall from Problem 1, part (d) of the Problem Set of Lesson 7 that if you know what a linear transformation does to the three points $(1,0,0),(0,1,0)$, and $(0,0,1)$, you can find the matrix of the transformation. How do the images of these three points lead to the matrix of the transformation?
a. Suppose that a linear transformation L_{1} rotates the unit cube by 90° counterclockwise about the z-axis. Find the matrix A_{1} of the transformation L_{1}.
b. Suppose that a linear transformation L_{2} rotates the unit cube by 90° counterclockwise about the y-axis. Find the matrix A_{2} of the transformation L_{2}.
c. \quad Suppose that a linear transformation L_{3} scales by 2 in the x-direction, scales by 3 in the y-direction, and scales by 4 in the z-direction. Find the matrix A_{3} of the transformation L_{3}.
d. Suppose that a linear transformation L_{4} projects onto the $x y$-plane. Find the matrix A_{4} of the transformation L_{4}.
e. Suppose that a linear transformation L_{5} projects onto the $x Z$-plane. Find the matrix A_{5} of the transformation L_{5}.
f. Suppose that a linear transformation L_{6} reflects across the plane with equation $y=x$. Find the matrix A_{6} of the transformation L_{6}.
g. Suppose that a linear transformation L_{7} satisfies $L_{7}\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right], L_{7}\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $L_{7}\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0 \\ \frac{1}{2}\end{array}\right]$. Find the matrix A_{7} of the transformation L_{7}. What is the geometric effect of this transformation?
h. Suppose that a linear transformation L_{8} satisfies $L_{8}\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], L_{8}\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$, and $L_{8}\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Find the matrix of the transformation L_{8}. What is the geometric effect of this transformation?

Exploratory Challenge 1

Transformations $L_{1}-L_{8}$ refer to the linear transformations from the Opening Exercise. For each pair,
i. Make a conjecture to predict the geometric effect of performing the two transformations in the order specified.
ii. Find the product of the corresponding matrices, in the order that corresponds to the indicated order of composition. Remember that if we perform a transformation L_{B} with matrix B and then L_{A} with matrix A, the matrix that corresponds to the composition $L_{A} \circ L_{B}$ is $A B$. That is, L_{B} is applied first, but matrix B is written second.
iii. Use the GeoGebra applet TransformCubes.ggb to draw the image of the unit cube under the transformation induced by the matrix product in part (ii). Was your conjecture in part (i) correct?
a. Perform L_{6} and then L_{6}.
b. Perform L_{1} and then L_{2}.
c. Perform L_{4} and then L_{5}.
d. Perform L_{4} and then L_{3}.
e. Perform L_{3} and then L_{7}.
f. Perform L_{8} and then L_{4}.
g. Perform L_{4} and then L_{6}.
h. Perform L_{2} and then L_{7}.
i. Perform L_{8} and then L_{8}.

Exploratory Challenge 2 (Optional)

Transformations $L_{1}-L_{8}$ refer to the transformations from the Opening Exercise. For each of the following pairs of matrices A and B below, compare the transformations $L_{A} \circ L_{B}$ and $L_{B} \circ L_{A}$.
a. $\quad L_{4}$ and L_{5}
b. $\quad L_{2}$ and L_{5}
c. $\quad L_{3}$ and L_{7}
d. $\quad L_{3}$ and L_{6}
e. $\quad L_{7}$ and L_{1}
f. What can you conclude about the order in which you compose two linear transformations?

Lesson Summary

- The linear transformation induced by a 3×3 matrix $A B$ has the same geometric effect as the sequence of the linear transformation induced by the 3×3 matrix B followed by the linear transformation induced by the 3×3 matrix A.
- That is, if matrices A and B induce linear transformations L_{A} and L_{B} in \mathbb{R}^{3}, respectively, then the linear transformation $L_{A B}$ induced by the matrix $A B$ satisfies $L_{A B}\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=L_{A}\left(L_{B}\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)\right)$.

Problem Set

1. Let A be the matrix representing a dilation of $\frac{1}{2}$, and let B be the matrix representing a reflection across the $y z$ plane.
a. Write A and B.
b. Evaluate $A B$. What does this matrix represent?
c. Let $x=\left[\begin{array}{l}5 \\ 6 \\ 4\end{array}\right], y=\left[\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right]$, and $z=\left[\begin{array}{c}8 \\ -2 \\ -4\end{array}\right]$. Find $(A B) x,(A B) y$, and $(A B) z$.
2. Let A be the matrix representing a rotation of 30° about the x-axis, and let B be the matrix representing a dilation of 5 .
a. Write A and B.
b. Evaluate $A B$. What does this matrix represent?
c. Let $x=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], y=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], z=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Find $(A B) x,(A B) y$, and $(A B) z$.
3. Let A be the matrix representing a dilation of 3 , and let B be the matrix representing a reflection across the plane $y=x$.
a. Write A and B.
b. Evaluate $A B$. What does this matrix represent?
c. Let $x=\left[\begin{array}{c}-2 \\ 7 \\ 3\end{array}\right]$. Find $(A B) x$.
4. Let $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 3 & 3 & 0 \\ 0 & 0 & 1\end{array}\right], B=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
a. Evaluate $A B$.
b. Let $x=\left[\begin{array}{c}-2 \\ 2 \\ 5\end{array}\right]$. Find $(A B) x$.
c. \quad Graph x and $(A B) x$.
5. Let $A=\left[\begin{array}{lll}\frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & \frac{1}{3}\end{array}\right], B=\left[\begin{array}{ccc}3 & 1 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 1\end{array}\right]$.
a. Evaluate $A B$.
b. Let $x=\left[\begin{array}{l}0 \\ 3 \\ 2\end{array}\right]$. Find $(A B) x$.
c. \quad Graph x and $(A B) x$.
6. Let $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 8\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.
a. Evaluate $A B$.
b. Let $x=\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right]$. Find $(A B) x$.
c. Graph x and $(A B) x$.
d. What does $A B$ represent geometrically?
7. Let A, B, C be 3×3 matrices representing linear transformations.
a. What does $A(B C)$ represent?
b. Will the pattern established in part (a) be true no matter how many matrices are multiplied on the left?
c. Does $(A B) C$ represent something different from $A(B C)$? Explain.
8. Let $A B$ represent any composition of linear transformations in \mathbb{R}^{3}. What is the value of $(A B) x$ where $x=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$?
