Lesson 2: Does Every Complex Number Have a Square Root?

Classwork

Exercises 1-6

1. Use the geometric effect of complex multiplication to describe how to calculate a square root of $z=119+120 i$.
2. Calculate an estimate of a square root of $119+120 i$.
3. Every real number has two square roots. Explain why.
4. Provide a convincing argument that every complex number must also have two square roots.
5. Explain how the polynomial identity $x^{2}-b=(x-\sqrt{b})(x+\sqrt{b})$ relates to the argument that every number has two square roots.
6. What is the other square root of $119+120 i$?

Example 1: Find the Square Roots of $119+120 i$
Find the square roots of $119+120 i$ algebraically.
Let $w=p+q i$ be the square root of $119+120 i$. Then

$$
\begin{gathered}
w^{2}=119+120 i \\
\text { and } \\
(p+q i)^{2}=119+120 i .
\end{gathered}
$$

a. Expand the left side of this equation.
b. Equate the real and imaginary parts, and solve for p and q.
c. What are the square roots of $119+120 i$?

Exercises 7-9

7. Use the method in Example 1 to find the square roots of $1+\sqrt{3} i$.
8. Find the square roots of each complex number.
a. $5+12 i$
b. $5-12 i$
9. Show that if $p+q i$ is a square root of $z=a+b i$, then $p-q i$ is a square root of the conjugate of $z, \bar{z}=a-b i$.
a. Explain why $(p+q i)^{2}=a+b i$.
b. What do a and b equal in terms of p and q ?
c. Calculate $(p-q i)^{2}$. What is the real part, and what is the imaginary part?
d. Explain why $(p-q i)^{2}=a-b i$.

Lesson Summary

The square roots of a complex number $a+b i$ will be of the form $p+q i$ and $-p-q i$ and can be found by solving the equations $p^{2}-q^{2}=a$ and $2 p q=b$.

Problem Set

Find the two square roots of each complex number by creating and solving polynomial equations.

1. $z=15-8 i$
2. $z=8-6 i$
3. $z=-3+4 i$
4. $z=-5-12 i$
5. $z=21-20 i$
6. $z=16-30 i$
7. $z=i$

A Pythagorean triple is a set of three positive integers a, b, and c such that $a^{2}+b^{2}=c^{2}$. Thus, these integers can be the lengths of the sides of a right triangle.
8. Show algebraically that for positive integers p and q, if

$$
\begin{aligned}
& a=p^{2}-q^{2} \\
& b=2 p q \\
& c=p^{2}+q^{2}
\end{aligned}
$$

then $a^{2}+b^{2}=c^{2}$,
9. Select two integers p and q, use the formulas in Problem 8 to find a, b, and c, and then show those numbers satisfy the equation $a^{2}+b^{2}=c^{2}$.
10. Use the formulas from Problem 8, and find values for p and q that give the following famous triples.
a. $(3,4,5)$
b. $(5,12,13)$
c. $(7,24,25)$
d. $(9,40,41)$
11. Is it possible to write the Pythagorean triple $(6,8,10)$ in the form $a=p^{2}-q^{2}, b=2 p q, c=p^{2}+q^{2}$ for some integers p and q ? Verify your answer.
12. Choose your favorite Pythagorean triple (a, b, c) that has a and b sharing only 1 as a common factor, for example $(3,4,5),(5,12,13)$, or $(7,24,25), \ldots$. Find the square of the length of a square root of $a+b i$; that is, find $|p+q i|^{2}$, where $p+q i$ is a square root of $a+b i$. What do you observe?

