Lesson 4: The Binomial Theorem

Classwork

Exercises

1. Show that z = 1 + i is a solution to the fourth degree polynomial equation $z^4 - z^3 + 3z^2 - 4z + 6 = 0$.

2. Show that z = 1 - i is a solution to the fourth degree polynomial equation $z^4 - z^3 + 3z^2 - 4z + 6 = 0$.

3. Based on the patterns seen in Pascal's triangle, what would be the coefficients of Rows 7 and 8 in the triangle? Write the coefficients of the triangle beneath the part of the triangle shown.

Row 0:							1						
Row 1:						1		1					
Row 2:					1		2		1				
Row 3:				1		3		3		1			
Row 4:			1		4		6		4		1		
Row 5:		1		5		10		10		5		1	
Row 6:	1		6		15		20		15		6		1
Row 7:													
Row 8:													

The Binomial Theorem 2/9/15

Lesson 4:

Date:

engage^{ny}

- Calculate the following factorials. 4.
 - a. 6!

b. 10!

- Calculate the value of the following factorial expressions. 5.
 - 7! 6! a.

10! b. 6!

8! 5! c.

 $\frac{12!}{10!}$ d.

engage^{ny}

- 6. Calculate the following quantities.
 - a. C(1,0) and C(1,1)

C(2,0), C(2,1), and C(2,2)b.

C(3,0), C(3,1), C(3,2), and C(3,3)c.

d. *C*(4,0), *C*(4,1), *C*(4,2), *C*(4,3), and *C*(4,4)

7. What patterns do you see in Exercise 5?

engage^{ny}

8. Expand the expression $(u + v)^3$.

9. Expand the expression $(u + v)^4$.

10.

a. Multiply the expression you wrote in Exercise 4 by *u*.

b. Multiply the expression you wrote in Exercise 4 by v.

c. How can you use the results from parts (a) and (b) to find the expanded form of the expression $(u + v)^5$?

11. What do you notice about your expansions for $(u + v)^4$ and $(u + v)^5$? Does your observation hold for other powers of (u + v)?

engage^{ny}

Lesson 4:

- 12. Use the binomial theorem to expand the following binomial expressions.
 - a. $(x + y)^6$

b. $(x + 2y)^3$

c. $(ab + bc)^4$

d. $(3xy - 2z)^3$

e. $(4p^2qr - qr^2)^5$

engage^{ny}

Lesson Summary

Pascal's triangle is an arrangement of numbers generated recursively:

Row 0:						1					
Row 1:					1		1				
Row 2:				1		2		1			
Row 3:			1		3		3		1		
Row 4:		1		4		6		4		1	
Row 5:	1		5		10		10		5		1
	:		÷		:		:		÷		÷

For an integer $n \ge 1$, the number n! is the product of all positive integers less than or equal to n. We define 0! = 1.

The binomial coefficients C(n,k) are given by $C(n,k) = \frac{n!}{k!(n-k)}!$ for integers $n \ge 0$ and $0 \le k \le n$.

THE BINOMIAL THEOREM: For any expressions u and v,

$$(u+v)^n = u^n + C(n,1)u^{n-1}v + C(n,2)u^{n-2}v^2 + \dots + C(n,k)u^{n-k}v^k + \dots + C(n,n-1)uv^{n-1} + v^n$$

That is, the coefficients of the expanded binomial $(u + v)^n$ are exactly the numbers in Row *n* of Pascal's triangle.

Problem Set

- 1. Evaluate the following expressions.
 - a. $\frac{9!}{8!}$
 - b. $\frac{7!}{5!}$
 - 5! 21!
 - C. $\frac{211}{19!}$
 - d. $\frac{8!}{4!}$
- 2. Use the binomial theorem to expand the following binomial expressions.
 - a. $(x + y)^4$
 - b. $(x + 2y)^4$
 - c. $(x + 2xy)^4$
 - d. $(x y)^4$
 - e. $(x 2xy)^4$

engage^{ny}

Lesson 4:

- Use the binomial theorem to expand the following binomial expressions. 3.
 - a. $(1+\sqrt{2})^5$ b. $(1+i)^9$ c. $(1-\pi)^5$ (Hint: $1-\pi = 1 + (-\pi)$.) d. $(\sqrt{2}+i)^6$
 - e. $(2-i)^6$
- Consider the expansion of $(a + b)^{12}$. Determine the coefficients for the terms with the powers of a and b shown. 4.
 - a^2b^{10} a.
 - b. a^5b^7
 - a^8b^4 c.
- Consider the expansion of $(x + 2y)^{10}$. Determine the coefficients for the terms with the powers of x and y shown. 5.
 - a. $x^2 y^8$
 - b. $x^4 y^6$
 - c. $x^5 y^5$
- Consider the expansion of $(5p + 2q)^6$. Determine the coefficients for the terms with the powers of p and q shown. 6.
 - a. p^2q^4
 - b. p^5q
 - c. p^3q^3
- Explain why the coefficient of the term that contains u^n is 1 in the expansion of $(u + v)^n$. 7.
- Explain why the coefficient of the term that contains $u^{n-1}v$ is n in the expansion of $(u + v)^n$. 8.
- Explain why the rows of Pascal's triangle are symmetric. That is, explain why C(n, k) = C(n, (n k)). 9.

engage^{ny}