Lesson 7: Curves from Geometry

Classwork

Exercise

Points F and G are located at $(0,3)$ and $(0,-3)$. Let $P(x, y)$ be a point such that $P F+P G=8$. Use this information to show that the equation of the ellipse is $\frac{x^{2}}{7}+\frac{y^{2}}{16}=1$.

Problem Set

1. Derive the equation of the ellipse with the given foci F and G that passes through point P. Write your answer in standard form: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
a. The foci are $F(-2,0)$ and $G(2,0)$, and point $P(x, y)$ satisfies the condition $P F+P G=5$.
b. The foci are $F(-1,0)$ and $G(1,0)$, and point $P(x, y)$ satisfies the condition $P F+P G=5$.
c. The foci are $F(0,-1)$ and $G(0,1)$, and point $P(x, y)$ satisfies the condition $P F+P G=4$.
d. The foci are $F\left(-\frac{2}{3}, 0\right)$ and $G\left(\frac{2}{3}, 0\right)$, and point $P(x, y)$ satisfies the condition $P F+P G=3$.
e. The foci are $F(0,-5)$ and $G(0,5)$, and point $P(x, y)$ satisfies the condition $P F+P G=12$.
f. The foci are $F(-6,0)$ and $G(6,0)$, and point $P(x, y)$ satisfies the condition $P F+P G=20$.
2. Recall from Lesson 6 that the semi-major axes of an ellipse are the segments from the center to the farthest vertices, and the semi-minor axes are the segments from the center to the closest vertices. For each of the ellipses in Problem 1, find the lengths a and b of the semi-major axes.
3. Summarize what you know about equations of ellipses centered at the origin with vertices $(a, 0),(-a, 0),(0, b)$, and $(0,-b)$.
4. Use your answer to Problem 3 to find the equation of the ellipse for each of the situations below.
a. An ellipse centered at the origin with x-intercepts $(-2,0),(2,0)$ and y-intercepts $(8,0),(-8,0)$.
b. An ellipse centered at the origin with x-intercepts $(-\sqrt{5}, 0),(\sqrt{5}, 0)$ and y-intercepts $(3,0),(-3,0)$.
5. Examine the ellipses and the equations of the ellipses you have worked with, and describe the ellipses with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in the three cases $a>b, a=b$, and $b>a$.
6. Is it possible for $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ to have foci at $(-c, 0)$ and $(c, 0)$ for some real number c ?
7. For each value of k specified in parts (a)-(e), plot the set of points in the plane that satisfy the equation $\frac{x^{2}}{4}+y^{2}=k$.
a. $\quad k=1$
b. $\quad k=\frac{1}{4}$
c. $\quad k=\frac{1}{9}$
d. $\quad k=\frac{1}{16}$
e. $\quad k=\frac{1}{25}$
f. $k=\frac{1}{100}$
g. Make a conjecture: Which points in the plane will satisfy the equation $\frac{x^{2}}{4}+y^{2}=0$?
h. Explain why your conjecture in part (g) makes sense algebraically.
i. Which points in the plane will satisfy the equation $\frac{x^{2}}{4}+y^{2}=-1$?
8. For each value of k specified in parts (a)-(e), plot the set of points in the plane that satisfy the equation $\frac{x^{2}}{k}+y^{2}=1$.
a. $\quad k=1$
b. $\quad k=2$
c. $\quad k=4$
d. $\quad k=10$
e. $k=25$
f. Describe what happens to the graph of $\frac{x^{2}}{k}+y^{2}=1$ as $k \rightarrow \infty$.
9. For each value of k specified in parts (a)-(e), plot the set of points in the plane that satisfy the equation $x^{2}+\frac{y^{2}}{k}=1$.
a. $\quad k=1$
b. $\quad k=2$
c. $\quad k=4$
d. $\quad k=10$
e. $k=25$
f. Describe what happens to the graph of $x^{2}+\frac{y^{2}}{k}=1$ as $k \rightarrow \infty$.
