Lesson 8: Curves from Geometry

Classwork

Exercises

1. Let F(0,5) and G(0,-5) be the foci of a hyperbola. Let the points P(x, y) on the hyperbola satisfy either PF - PG = 6 or PG - PF = 6. Use the distance formula to derive an equation for this hyperbola, writing your answer in the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

- 2. Where does the hyperbola described above intersect the y-axis?
- Find an equation for the line that acts as a boundary for the portion of the curve that lies in the first quadrant. 3.
- Sketch the graph of the hyperbola described above. 4.

Curves from Geometry

engage^{ny}

Date:

Problem Set

- 1. For each hyperbola described below: (1) Derive an equation of the form $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ or $\frac{y^2}{b^2} \frac{x^2}{a^2} = 1$. (2) State any *x*- or *y*-intercepts. (3) Find the equations for the asymptotes of the hyperbola.
 - a. Let the foci be A(-2,0) and B(2,0), and let P be a point for which either PA PB = 2 or PB PA = 2.
 - b. Let the foci be A(-5,0) and B(5,0), and let P be a point for which either PA PB = 5 or PB PA = 5.
 - c. Consider A(0, -3) and B(0,3), and let P be a point for which either PA PB = 2.5 or PB PA = 2.5.
 - d. Consider $A(0, -\sqrt{2})$ and $B(0, \sqrt{2})$, and let *P* be a point for which either PA PB = 4 or PB PA = 2.
- 2. Graph the hyperbolas in parts (a)–(d) in Problem 1.
 - a.
 - b.
 - υ.
 - c.
 - d.
- 3. For each value of k specified in parts (a)–(e), plot the set of points in the plane that satisfy the equation $x^2 y^2 = k$.
 - a. k = 4
 - b. *k* = 1
 - c. $k = \frac{1}{4}$
 - d. k = 0
 - e. $k = -\frac{1}{4}$
 - f. k = -1
 - g. k = -4
 - h. Describe the hyperbolas $x^2 y^2 = k$ for different values of k. Consider both positive and negative values of k, and consider values of k close to zero and far from zero.
 - i. Are there any values of k so that the equation $x^2 y^2 = k$ has no solution?
- 4. For each value of k specified in parts (a)–(e), plot the set of points in the plane that satisfy the equation
 - $\frac{x^2}{k} y^2 = 1.$
 - a. k = -1
 - b. *k* = 1
 - c. k = 2
 - d. k = 4
 - e. *k* = 10
 - f. k = 25

engage^{ny}

Lesson 8:

Date:

- Describe what happens to the graph of $\frac{x^2}{k} y^2 = 1$ as $k \to \infty$. g.
- 5. For each value of k specified in parts (a)–(e), plot the set of points in the plane that satisfy the equation
 - $x^2 \frac{y^2}{\nu} = 1.$
 - a. k = -1
 - b. k = 1
 - c. k = 2
 - d. k = 4
 - e. *k* = 10
 - Describe what happens to the graph $x^2 \frac{y^2}{k} = 1$ as $k \to \infty$. f.
- 6. An equation of the form $ax^2 + bx + cy^2 + dy + e = 0$ where a and c have opposite signs might represent a hyperbola.
 - Apply the process of completing the square in both x and y to convert the equation a.

 $9x^2 - 36x - 4y^2 - 8y - 4 = 0$ to one of the standard forms for a hyperbola: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{h^2} = 1$ or $\frac{(y-k)^2}{h^2} - \frac{(x-h)^2}{a^2} = 1.$

- b. Find the center of this hyperbola.
- Find the asymptotes of this hyperbola. c.
- d. Graph the hyperbola.
- 7. For each equation below, identify the graph as either an ellipse, a hyperbola, two lines, or a single point. If possible, write the equation in the standard form for either an ellipse or a hyperbola.
 - a. $4x^2 8x + 25y^2 100y + 4 = 0$
 - b. $4x^2 16x 9y^2 54y 65 = 0$
 - c. $4x^2 + 8x + y^2 + 2y + 5 = 0$
 - d. $-49x^2 + 98x + 4y^2 245 = 0$
 - e. What can you tell about a graph of an equation of the form $ax^2 + bx + cy^2 + dy + e = 0$ by looking at the coefficients?

engage

Date: