Lesson 8: Curves from Geometry

Classwork

Exercises

1. Let $F(0,5)$ and $G(0,-5)$ be the foci of a hyperbola. Let the points $P(x, y)$ on the hyperbola satisfy either $P F-P G=6$ or $P G-P F=6$. Use the distance formula to derive an equation for this hyperbola, writing your answer in the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
2. Where does the hyperbola described above intersect the y-axis?
3. Find an equation for the line that acts as a boundary for the portion of the curve that lies in the first quadrant.
4. Sketch the graph of the hyperbola described above.

Problem Set

1. For each hyperbola described below: (1) Derive an equation of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ or $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$.
(2) State any x - or y-intercepts. (3) Find the equations for the asymptotes of the hyperbola.
a. Let the foci be $A(-2,0)$ and $B(2,0)$, and let P be a point for which either $P A-P B=2$ or $P B-P A=2$.
b. Let the foci be $A(-5,0)$ and $B(5,0)$, and let P be a point for which either $P A-P B=5$ or $P B-P A=5$.
c. Consider $A(0,-3)$ and $B(0,3)$, and let P be a point for which either $P A-P B=2.5$ or $P B-P A=2.5$.
d. Consider $A(0,-\sqrt{2})$ and $B(0, \sqrt{2})$, and let P be a point for which either $P A-P B=4$ or $P B-P A=2$.
2. Graph the hyperbolas in parts (a)-(d) in Problem 1.
a.
b.
c.
d.
3. For each value of k specified in parts (a)-(e), plot the set of points in the plane that satisfy the equation $x^{2}-y^{2}=k$.
a. $\quad k=4$
b. $\quad k=1$
c. $\quad k=\frac{1}{4}$
d. $\quad k=0$
e. $k=-\frac{1}{4}$
f. $\quad k=-1$
g. $k=-4$
h. Describe the hyperbolas $x^{2}-y^{2}=k$ for different values of k. Consider both positive and negative values of k, and consider values of k close to zero and far from zero.
i. Are there any values of k so that the equation $x^{2}-y^{2}=k$ has no solution?
4. For each value of k specified in parts (a)-(e), plot the set of points in the plane that satisfy the equation $\frac{x^{2}}{k}-y^{2}=1$.
a. $\quad k=-1$
b. $\quad k=1$
c. $\quad k=2$
d. $\quad k=4$
e. $k=10$
f. $k=25$
g. Describe what happens to the graph of $\frac{x^{2}}{k}-y^{2}=1$ as $k \rightarrow \infty$.
5. For each value of k specified in parts (a)-(e), plot the set of points in the plane that satisfy the equation $x^{2}-\frac{y^{2}}{k}=1$.
a. $\quad k=-1$
b. $\quad k=1$
c. $k=2$
d. $\quad k=4$
e. $k=10$
f. Describe what happens to the graph $x^{2}-\frac{y^{2}}{k}=1$ as $k \rightarrow \infty$.
6. An equation of the form $a x^{2}+b x+c y^{2}+d y+e=0$ where a and c have opposite signs might represent a hyperbola.
a. Apply the process of completing the square in both x and y to convert the equation $9 x^{2}-36 x-4 y^{2}-8 y-4=0$ to one of the standard forms for a hyperbola: $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$ or $\frac{(y-k)^{2}}{b^{2}}-\frac{(x-h)^{2}}{a^{2}}=1$.
b. Find the center of this hyperbola.
c. Find the asymptotes of this hyperbola.
d. Graph the hyperbola.
7. For each equation below, identify the graph as either an ellipse, a hyperbola, two lines, or a single point. If possible, write the equation in the standard form for either an ellipse or a hyperbola.
a. $4 x^{2}-8 x+25 y^{2}-100 y+4=0$
b. $4 x^{2}-16 x-9 y^{2}-54 y-65=0$
c. $4 x^{2}+8 x+y^{2}+2 y+5=0$
d. $-49 x^{2}+98 x+4 y^{2}-245=0$
e. What can you tell about a graph of an equation of the form $a x^{2}+b x+c y^{2}+d y+e=0$ by looking at the coefficients?
