

Lesson 10: The Structure of Rational Expressions

Classwork

Opening Exercise

- 1. Add the fractions: $\frac{3}{5} + \frac{2}{7}$.
- 2. Subtract the fractions: $\frac{5}{2} \frac{4}{3}$.

3. Add the expressions: $\frac{3}{x} + \frac{x}{5}$.

4. Subtract the expressions: $\frac{x}{x+2} - \frac{3}{x+1}$.

Exercises

1. Construct an argument that shows that the set of rational numbers is closed under addition. That is, if x and y are rational numbers and w = x + y, prove that w must also be a rational number.

2. How could you modify your argument to show that the set of rational numbers is also closed under subtraction? Discuss your response with another student.

- 3. Multiply the fractions: $\frac{2}{5} \cdot \frac{3}{4}$.
- 4. Divide the fractions: $\frac{2}{5} \div \frac{3}{4}$.

PRECALCULUS AND ADVANCED TOPICS

5. Multiply the expressions: $\frac{x+1}{x+2} \cdot \frac{3x}{x-4}$.

6. Divide the expressions: $\frac{x+1}{x+2} \div \frac{3x}{x-4}$.

7. Construct an argument that shows that the set of rational numbers is closed under division. That is, if x and y are rational numbers (with y nonzero) and $w = \frac{x}{y}$, prove that w must also be a rational number.

8. How could you modify your argument to show that the set of rational expressions is also closed under division by a nonzero rational expression? Discuss your response with another student.

The Structure of Rational Expressions 2/9/15

Problem Set

- 1. Given $\frac{x+1}{x-2}$ and $\frac{x-1}{x^2-4}$ show that performing the following operations results in another rational expression.
 - a. Addition.
 - b. Subtraction.
 - c. Multiplication.
 - d. Division.
- 2. Find two rational expressions $\frac{a}{b}$ and $\frac{c}{d}$ that produce the result $\frac{x-1}{x^2}$ when using the following operations. Answers for each type of operation may vary. Justify your answers.
 - a. Addition.
 - b. Subtraction.
 - c. Multiplication.
 - d. Division.
- 3. Find two rational expressions $\frac{a}{b}$ and $\frac{c}{d}$ that produce the result $\frac{2x+2}{x^2-x}$ when using the following operations. Answers for each type of operation may vary. Justify your answers.
 - a. Addition.
 - b. Subtraction.
 - c. Multiplication.
 - d. Division.
- 4. Consider the rational expressions A, B and their quotient, $\frac{A}{B}$, where B is not equal to zero.
 - a. For some rational expression C, does $\frac{AC}{BC} = \frac{A}{R}$?
 - b. Let $A = \frac{x}{y} + \frac{1}{x}$ and $B = \frac{y}{x} + \frac{1}{y}$. What is the least common denominator of every term of each expression?
 - c. Find AC, BC where C is equal to your result in part (b). Then find $\frac{AC}{BC}$. Simplify your answer.
 - d. Express each rational expression *A*, *B* as a single rational term; that is, as a division between two polynomials.
 - e. Write $\frac{A}{B}$ as a multiplication problem.
 - f. Use your answers to parts (d) and (e) to simplify $\frac{A}{R}$.
 - g. Summarize your findings. Which method do you prefer using to simplify rational expressions?
- 5. Simplify the following rational expressions.

a. $\frac{\overline{y} - \overline{x}}{x - \overline{y}}$.

The Structure of Rational Expressions 2/9/15

PRECALCULUS AND ADVANCED TOPICS

b.
$$\frac{\frac{1}{x} + \frac{1}{y}}{\frac{1}{x^2} - \frac{1}{y^2}}.$$

c.
$$\frac{\frac{1}{x^4} + \frac{1}{y^2}}{\frac{1}{x^4} + \frac{2}{x^2y} + \frac{1}{y^2}}.$$

d.
$$\frac{\frac{1}{x-1} - \frac{1}{x}}{\frac{1}{x-1} + \frac{1}{x}}.$$

6. Find *A* and *B* that make the equation true. Verify your results.

a.
$$\frac{A}{x+1} + \frac{B}{x-1} = \frac{2}{x^2-1}$$
.
b. $\frac{A}{x+3} + \frac{B}{x+2} = \frac{2x-1}{x^2+5x+6}$.

7. Find *A*, *B*, and *C* that make the equation true. Verify your result.

 $\frac{Ax+B}{x^2+1} + \frac{C}{x+2} = \frac{x-1}{(x^2+1)(x+2)}.$

The Structure of Rational Expressions 2/9/15

