Lesson 15: Transforming Rational Functions

Classwork

Exploratory Challenge/Exercises 1-5

1. Sketch the general shape of the graph of the function $f(x)=\frac{1}{x^{n}}$ for $n>0$ when n is an odd number.
2. Sketch the general shape of the graph of the function $f(x)=\frac{1}{x^{n}}$ for $n>0$ when n is an even number.
3. Sketch the graph of the function $f(x)=\frac{1}{x}$. Then, use the graph of f to sketch each transformation of f showing the vertical and horizontal asymptotes.
a. $\quad g(x)=\frac{1}{x-2}$
b. $\quad h(x)=-\frac{1}{x}+3$
c. $\quad k(x)=\frac{2}{x+3}-5$
4. Use your results from Exercise 3 to make some general statements about graphs of functions in the form $f(x)=a+\frac{b}{x-c}$. Describe the effect that changing each parameter a, b, and c has on the graph of f.
5. Sketch the graph of the function $f(x)=\frac{1}{x^{2}}$. Then, use the graph of f to sketch each transformation of f showing the vertical and horizontal asymptotes.
a. $\quad g(x)=-\frac{3}{(x+1)^{2}}$
b. $\quad h(x)=\frac{1}{(x-1)^{2}}+4$

Example 1
Graph the function $f(x)=\frac{x+2}{x-3}$ using transformations of the graph of $y=\frac{1}{x}$.

Exercises 6-13

Sketch each function by using transformations of the graph of $y=\frac{1}{x}$ or the graph of $y=\frac{1}{x^{2}}$. Explain the transformations that are evident in each example.
6. $f(x)=\frac{x-7}{x-5}$
7. $f(x)=\frac{2 x+6}{x+1}$
8. $f(x)=\frac{2 x^{2}-1}{x^{2}}$
9. $f(x)=\frac{1+4 x^{3}}{x^{3}}$
10. $f(x)=\frac{x^{2}-2 x+3}{(x-1)^{2}}$
11. $f(x)=\frac{2 x^{2}+12 x+13}{(x+3)^{2}}$
12. $f(x)=\frac{x+4}{x^{2}-16}$
13. $f(x)=\frac{x}{x^{3}-4 x^{2}+4 x}$

Problem Set

1. Write each function so that it appears to be a transformation of $y=\frac{1}{x^{n}}$. Then, explain how the graph of each function relates to the graph of $y=\frac{1}{x^{n}}$.
a. $\quad y=\frac{5 x-8}{x+2}$
b. $y=\frac{2 x^{3}-4}{x^{3}}$
c. $y=\frac{x^{2}-4 x+8}{(x-2)^{2}}$
d. $y=\frac{3 x-12}{x^{2}-16}$
e. $y=\frac{2 x^{2}+16 x+25}{x^{2}+8 x+16}$
2. For each function in Problem 1, state how the horizontal and vertical asymptotes are affected from the original graph of $y=\frac{1}{x^{n}}$.
3. Sketch a picture of the graph of each function in Problem 1.
4. What are some indicators that a rational function can be expressed as a transformation of $y=\frac{1}{x^{n}}$ or not?
5. Write an equation for a function whose graph is a transformation of the graph $y=\frac{1}{x}$. The graph has been shifted right 2 units, stretched vertically by a factor of 2 , and been shifted down 3 units.
