Lesson 19: Restricting the Domain

Classwork

Opening Exercise

The function f with domain $\{1,2,3,4,5\}$ is shown in the table below.

x	f(x)		
1	7		
2	3		
3	1		
4	9		
5	5		

- a. What is f(1)? Explain how you know.
- b. What is $f^{-1}(1)$? Explain how you know.
- c. What is the domain of f^{-1} ? Explain how you know.
- d. Construct a table for the function f^{-1} , the inverse of f.

Restricting the Domain 2/9/15

PRECALCULUS AND ADVANCED TOPICS

Exercises 1–9

1. Complete the mapping diagram to show that $f(f^{-1}(x)) = x$.

2. Complete the mapping diagram to show that $f^{-1}(f(x)) = x$.

3. The graph of f is shown below.

- Select several ordered pairs on the graph of f, and use those to construct a graph of f^{-1} . a.
- Draw the line y = x, and use it to construct the graph of f^{-1} below. b.

Lesson 19: Restricting the Domain 2/9/15

Date:

- c. The algebraic function for f is given by $f(x) = x^3 + 2$. Is the formula for $f^{-1}(x) = \sqrt[3]{x} 2$? Explain why or why not.
- 4. The graph of $f(x) = \sqrt{x-3}$ is shown below. Construct the graph of f^{-1} .

5. Morgan used the procedures learned in Lesson 18 to define $f^{-1}(x) = x^2 + 3$. How does the graph of this function compare to the one you made in Exercise 5?

Restricting the Domain 2/9/15

6. Construct the inverse of the function *f* given by the table below. Is the inverse a function? Explain your reasoning.

x	-3	-2	-1	0	1	2	3
f(x)	4	-1	-4	-5	-4	-1	4

7. The graphs of several functions are shown below. Which ones are invertible? Explain your reasoning.

Restricting the Domain 2/9/15

S.127

Lesson 19:

Date:

- 8. Given the function $f(x) = x^2 4$.
 - a. Select a suitable domain for *f* that will make it an invertible function. State the range of *f*.

b. Write a formula for f^{-1} . State the domain and range of f^{-1} .

Restricting the Domain 2/9/15

c. Verify graphically that f, with the domain you selected, and f^{-1} are indeed inverses.

d. Verify that f and f^{-1} are indeed inverses by showing that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

Restricting the Domain 2/9/15

9. Three pairs of functions are given below. For which pairs, are f and g inverses of each other? Show work to support your reasoning. If a domain is not specified, assume it is the set of real numbers.

a.
$$f(x) = \frac{x}{x+1}, x \neq -1 \text{ and } g(x) = \frac{-x}{x-1}, x \neq 1$$

b. $f(x) = \sqrt{x} - 1, x \ge 0$ and $g(x) = (x + 1)^2$

c.
$$f(x) = -0.75x + 1$$
 and $g(x) = -\frac{4}{3}x - \frac{4}{3}x$

Restricting the Domain 2/9/15

Lesson Summary

COMPOSITION OF A FUNCTION AND ITS INVERSE: To verify that two functions are inverses, show that f(g(x)) = xand g(f(x)) = x.

Invertible Function: The domain of a function f can be restricted to make it invertible. A function is said to be invertible if its inverse is also a function.

Problem Set

- Let f be the function that assigns to each student in your class his or her biological mother. 1.
 - In order for f to have an inverse, what condition must be true about the students in your class? a.
 - If we enlarged the domain to include all students in your school, would this larger domain function have an b. inverse? Explain.
- 2. Consider a linear function of the form f(x) = mx + b, where m and b are real numbers, and $m \neq 0$.
 - Explain why linear functions of this form always have an inverse this is also a function. a.
 - b. State the general form of a line that does not have an inverse.
 - What kind of function is the inverse of an invertible linear function (e.g., linear, quadratic, exponential, c. logarithmic, rational, etc.)?
 - Find the inverse of a linear function of the form f(x) = mx + b, where m and b are real numbers, and d. $m \neq 0$.
- 3. Consider a quadratic function of the form $f(x) = b\left(\frac{x-h}{a}\right)^2 + k$ for real numbers a, b, h, k, and $a, b \neq 0$.
 - a. Explain why quadratic functions never have an inverse without restricting the domain.
 - What are the coordinates of the vertex of the graph of f? b.
 - State the possible domains you can restrict f on so that it will have an inverse. с.
 - What kind of function is the inverse of a quadratic function on an appropriate domain? d.
 - Find f^{-1} for each of the domains you gave in part (c). e.
- Show that f(x) = mx + b for real numbers m and b with $m \neq 0$ has an inverse that is also a function. 4.
- Explain why $f(x) = a(x h)^2 + k$ for real numbers a, h, and k with $a \neq 0$ does not have an inverse that is a 5. function. Support your answer in at least two different ways (numerically, algebraically, or graphically).

engage

Date:

Extension

- 6. Consider the function $f(x) = \sin(x)$.
 - a. Graph y = f(x) on the domain $[-2\pi, 2\pi]$.
 - b. If we require a restricted domain on f to be continuous and cover the entirety of the range of f, how many possible choices for a domain are there in your graph from part (a)? What are they?
 - c. Make a decision on which restricted domain you listed in part (b) makes the most sense to choose. Explain your decision.
 - d. Use a calculator to evaluate $\sin^{-1}(0.75)$ to three decimal places. How can you use your answer to find other values ψ such that $\sin(\psi) = 1$? Verify that your technique works by checking it against your graph in part (a).

Restricting the Domain 2/9/15

