

Lesson 2: Properties of Trigonometric Functions

Classwork

Opening Exercise

The graphs below depict four trigonometric functions. Identify which of the graphs are f(x) = sin(x), g(x) = cos(x), and h(x) = tan(x). Explain how you know.

Properties of Trigonometric Functions 2/18/15

Exercises 1–4

- 1. Use the unit circle to evaluate these expressions:
 - a. $\sin\left(\frac{17\pi}{4}\right)$
 - b. $\cos\left(\frac{19\pi}{6}\right)$
 - c. $tan(450\pi)$
- 2. Use the identity $\sin(\pi + \theta) = -\sin(\theta)$ for all real-numbered values of θ to verify the identity $\sin(2\pi + \theta) = \sin(\theta)$ for all real-numbered values of θ .
- 3. Use your understanding of the symmetry of the sine and cosine functions to evaluate these functions for the given values of θ .
 - a. $\sin(-\frac{\pi}{2})$

b.
$$\cos\left(-\frac{5\pi}{3}\right)$$

4. Use your understanding of the symmetry of the sine and cosine functions to determine the value of $tan(-\theta)$ for all real-numbered values of θ . Determine whether the tangent function is even, odd, or neither.

Exploratory Challenge/Exercises 5–6

5. Use your unit circle model to complete the table. Then use the completed table to answer the questions that follow.

θ	$\left(\frac{\pi}{2}+\theta\right)$	$\sin\left(\frac{\pi}{2}+\theta\right)$	$\cos\left(\frac{\pi}{2}+\theta\right)$
0			
$\frac{\pi}{2}$			
π			
$\frac{3\pi}{2}$			
2π			

- a. What does the value $\left(\frac{\pi}{2} + \theta\right)$ represent with respect to the rotation of the carousel?
- b. What pattern do you recognize in the values of $\sin\left(\frac{\pi}{2} + \theta\right)$ as θ increases from 0 to 2π ?

c. What pattern do you recognize in the values of $\cos\left(\frac{\pi}{2} + \theta\right)$ as θ increases from 0 to 2π ?

Properties of Trigonometric Functions 2/18/15

d. Fill in the blanks to formalize these relationships:

$$\sin\left(\frac{\pi}{2} + \theta\right) = \\ \cos\left(\frac{\pi}{2} + \theta\right) =$$

6. Use your unit circle model to complete the table. Then use the completed table to answer the questions that follow.

θ	$\left(\frac{\pi}{2}-\theta\right)$	$\sin\left(\frac{\pi}{2}-\theta\right)$	$\cos\left(\frac{\pi}{2}-\theta\right)$
0			
$\frac{\pi}{2}$			
π			
$\frac{3\pi}{2}$			
2π			

- a. What does the value $\left(\frac{\pi}{2} \theta\right)$ represent with respect to the rotation of a rider on the carousel?
- b. What pattern do you recognize in the values of $\sin\left(\frac{\pi}{2} \theta\right)$ as θ increases from 0 to 2π ?

c. What pattern do you recognize in the values of $\cos\left(\frac{\pi}{2} - \theta\right)$ as θ increases from 0 to 2π ?

Properties of Trigonometric Functions 2/18/15

d. Fill in the blanks to formalize these relationships:

$$\sin\left(\frac{\pi}{2} - \theta\right) = \\ \cos\left(\frac{\pi}{2} - \theta\right) =$$

Exercise 7

7. Use your understanding of the relationship between the sine and cosine functions to verify these statements.

a.
$$\cos\left(\frac{4\pi}{3}\right) = \sin\left(\frac{-\pi}{6}\right)$$

b.
$$\cos\left(\frac{5\pi}{4}\right) = \sin\left(\frac{7\pi}{4}\right)$$

Lesson Summary For all real numbers θ for which the expressions are defined, $\sin(\theta) = \sin(2\pi n + \theta)$ and $\cos(\theta) = \cos(2\pi n + \theta)$ for all integer values of n $\tan(\theta) = \tan(\pi n + \theta)$ for all integer values of n $\sin(-\theta) = -\sin(\theta), \cos(-\theta) = \cos(\theta), \text{ and } \tan(-\theta) = -\tan(\theta)$ $\sin\left(\frac{\pi}{2} + \theta\right) = \cos(\theta) \text{ and } \cos\left(\frac{\pi}{2} + \theta\right) = -\sin(\theta)$ $\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta) \text{ and } \cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$

Problem Set

- 1. Evaluate the following trigonometric expressions. Show how you used the unit circle to determine the solution.
 - a. $\sin\left(\frac{13\pi}{6}\right)$ b. $\cos\left(-\frac{5\pi}{3}\right)$ c. $\tan\left(\frac{25\pi}{4}\right)$ d. $\sin\left(-\frac{3\pi}{4}\right)$ e. $\cos\left(-\frac{5\pi}{6}\right)$
 - f. $\sin\left(\frac{17\pi}{3}\right)$
 - g. $\cos\left(\frac{25\pi}{4}\right)$
 - h. $\tan\left(\frac{29\pi}{6}\right)$
 - i. $\sin\left(-\frac{31\pi}{6}\right)$
 - j. $\cos\left(-\frac{32\pi}{6}\right)$
 - k. $\tan\left(-\frac{18\pi}{3}\right)$

- Given each value of β below, find a value of α with $0 \le \alpha \le 2\pi$ so that $\cos(\alpha) = \cos(\beta)$ and $\alpha \ne \beta$. 2.
 - a. $\beta = \frac{3\pi}{4}$
 - b. $\beta = \frac{5\pi}{6}$
 - c. $\beta = \frac{11\pi}{12}$
 - d. $\beta = 2\pi$
 - e. $\beta = \frac{7\pi}{5}$
 - f. $\beta = \frac{17\pi}{30}$

 - g. $\beta = \frac{8\pi}{11}$
- Given each value of β below, find two values of α with $0 \le \alpha \le 2\pi$ so that $\cos(\alpha) = \sin(\beta)$. 3.
 - a. $\beta = \frac{\pi}{3}$
 - b. $\beta = \frac{7\pi}{6}$ c. $\beta = \frac{3\pi}{4}$
 - d. $\beta = \frac{\pi}{2}$
- Given each value of β below, find two values of α with $0 \le \alpha \le 2\pi$ so that $\sin(\alpha) = \cos(\beta)$. 4.
 - a. $\beta = \frac{\pi}{3}$
 - b. $\beta = \frac{5\pi}{6}$
 - c. $\beta = \frac{7\pi}{4}$
 - d. $\beta = \frac{\pi}{12}$
- Jamal thinks that $\cos\left(\alpha \frac{\pi}{4}\right) = \sin\left(\alpha + \frac{\pi}{4}\right)$ for any value of α . Is he correct? Explain how you know. 5.
- Shawna thinks that $\cos\left(\alpha \frac{\pi}{3}\right) = \sin\left(\alpha + \frac{\pi}{6}\right)$ for any value of α . Is she correct? Explain how you know. 6.
- 7. Rochelle looked at Jamal and Shawna's results from Problems 5 and 6 and came up with the conjecture below. Is she correct? Explain how you know.

Conjecture:
$$\cos(\alpha - \beta) = \sin\left(\alpha + \left(\frac{\pi}{2} - \beta\right)\right).$$

Properties of Trigonometric Functions 2/18/15

- 8. A frog is sitting on the edge of a playground carousel with radius 1 meter. The ray through the frog's position and the center of the carousel makes an angle of measure θ with the horizontal, and his starting coordinates are approximately (0.81,0.59). Find his new coordinates after the carousel rotates by each of the following amounts.
 - a. $\frac{\pi}{2}$
 - b. π
 - c. 2π
 - d. $-\frac{\pi}{2}$
 - 2
 - e. π π
 - f. $\frac{\pi}{2} \theta$
 - g. $\pi 2\theta$
 - h. -2θ

Properties of Trigonometric Functions 2/18/15

