Lesson 3: Addition and Subtraction Formulas

Classwork

Example 1

Consider the figures below. The figure on the right is obtained from the figure on the left by rotating by – β about the origin.

a. Calculate the length of \overline{AB} in the figure on the left.

b. Calculate the length of $\overline{A'B'}$ in the figure on the right.

c. Set \overline{AB} and $\overline{A'B'}$ equal to each other, and solve the equation for $\cos(\alpha - \beta)$.

Exercises 1-2

1. Use the fact that $\cos(-\theta) = \cos(\theta)$ to determine a formula for $\cos(\alpha + \beta)$.

2. Use the fact that $\sin(\theta) = \cos\left(\frac{\pi}{2} - \theta\right)$ to determine a formula for $\sin(\alpha - \beta)$.

Example 2

Use the identity $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$ to show that $\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$.

Exercises 3-5

2. Verify the identity $\tan(\alpha-\beta)=\frac{\tan(\alpha)-\tan(\beta)}{1+\tan(\alpha)\tan(\beta)}$ for all $(\alpha-\beta)\neq\frac{\pi}{2}+\pi n$.

- 3. Use the addition and subtraction formulas to evaluate the expressions shown.
 - a. $\cos\left(-\frac{5\pi}{12}\right)$
 - b. $\sin\left(\frac{23\pi}{12}\right)$
 - c. $\tan\left(\frac{5\pi}{12}\right)$
- 4. Use the addition and subtraction formulas to verify these identities for all real-number values of θ .
 - a. $\sin(\pi \theta) = \sin(\theta)$
 - b. $cos(\pi + \theta) = -cos(\theta)$

Lesson Summary

The sum and difference formulas for sine, cosine, and tangent are summarized below.

For all real numbers α and β for which the expressions are defined,

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$$

$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$$
$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$

Problem Set

- Use the addition and subtraction formulas to evaluate the given trigonometric expressions.
 - a. $\cos\left(\frac{\pi}{12}\right)$
 - b. $\sin\left(\frac{\pi}{12}\right)$
 - c. $\sin\left(\frac{5\pi}{12}\right)$
 - d. $\cos\left(-\frac{\pi}{12}\right)$
 - e. $\sin\left(\frac{7\pi}{12}\right)$
 - f. $\cos\left(-\frac{7\pi}{12}\right)$
 - g. $\sin\left(\frac{13\pi}{12}\right)$
 - h. $\cos\left(-\frac{13\pi}{12}\right)$
 - i. $\sin\left(\frac{\pi}{12}\right)\cos\left(\frac{\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right)\sin\left(\frac{\pi}{12}\right)$
 - j. $\sin\left(\frac{5\pi}{12}\right)\cos\left(\frac{\pi}{6}\right) \cos\left(\frac{5\pi}{12}\right)\sin\left(\frac{\pi}{6}\right)$
 - k. $\sin\left(\frac{\pi}{2}\right)\cos\left(\frac{\pi}{2}\right) + \sin\left(\frac{\pi}{2}\right)\sin\left(\frac{\pi}{2}\right)$
 - 1. $\cos\left(\frac{\pi}{s}\right)\cos\left(\frac{\pi}{s}\right) \sin\left(\frac{\pi}{s}\right)\sin\left(\frac{\pi}{s}\right)$
 - m. $\cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{12}\right) + \sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{12}\right)$
 - n. $\sin\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{12}\right) \cos\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{12}\right)$

PRECALCULUS AND ADVANCED TOPICS

The figure below and to the right is obtained from the figure on the left by rotating the angle by α about the origin. Use the method shown in Example 1 to show that $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$.

- Use the sum formula for sine to show that $\sin(\alpha \beta) = \sin(\alpha)\cos(\beta) \cos(\alpha)\sin(\beta)$.
- Evaluate $\tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}$ to show $\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 \tan(\alpha)\tan(\beta)}$. Use the resulting formula to show that $\tan(2\alpha) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}$
- Show an $(x y) = \frac{\tan(x) \tan(y)}{1 + \tan(x)\tan(y)}$.
- Find the exact value of the following by using addition and subtraction formulas.
 - a. $\tan\left(\frac{\pi}{12}\right)$
 - b. $\tan\left(-\frac{\pi}{12}\right)$
 - c. $\tan\left(\frac{7\pi}{12}\right)$
 - d. $\tan\left(-\frac{13\pi}{12}\right)$

 - f. $\frac{\tan(\frac{\pi}{3}) \tan(\frac{\pi}{12})}{1 + \tan(\frac{\pi}{3})\tan(\frac{\pi}{12})}$
 - g. $\frac{\tan(\frac{\pi}{12}) + \tan(\frac{\pi}{12})}{1 \tan(\frac{\pi}{12})\tan(\frac{\pi}{12})}$