

Lesson 4: Addition and Subtraction Formulas

Classwork

Exercises

- 1. Derive formulas for the following:
 - a. $sin(2\theta)$

b. $\cos(2\theta)$

2. Use the double-angle formulas for sine and cosine to verify these identities:

a.
$$\tan(2\theta) = \frac{2\tan(\theta)}{1-\tan^2(\theta)}$$

b.
$$\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$$

c. $\sin(3\theta) = -4\sin^3(\theta) + 3\sin(\theta)$

3. Suppose that the position of a rider on the unit circle carousel is (0.8, -0.6) for a rotation θ . What is the position of the rider after rotation by 2θ ?

4. Use the double-angle formula for cosine to establish the identity $\cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{\cos(\theta)+1}{2}}$.

5. Use the double-angle formulas to verify these identities:

a.
$$\sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1-\cos(\theta)}{2}}$$

PRECALCULUS AND ADVANCED TOPICS

b.
$$\tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1-\cos(\theta)}{1+\cos(\theta)}}$$

6. The position of a rider on the unit circle carousel is (0.8, -0.6) after a rotation by θ where $0 \le \theta < 2\pi$. What is the position of the rider after rotation by $\frac{\theta}{2}$?

- 7. Evaluate the following trigonometric expressions.
 - a. $\sin\left(\frac{3\pi}{8}\right)$

b. $\tan\left(\frac{\pi}{24}\right)$

Lesson Summary

The double-angle and half-angle formulas for sine, cosine, and tangent are summarized below.

For all real numbers θ for which the expressions are defined,

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$
$$\cos(2\theta) = \cos^{2}(\theta) - \sin^{2}(\theta)$$
$$= 2\cos^{2}(\theta) - 1$$
$$= 1 - 2\sin^{2}(\theta)$$
$$\tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^{2}(\theta)}$$
$$\sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos(\theta)}{2}}$$
$$\cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{\cos(\theta) + 1}{2}}$$
$$\tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}}$$

Problem Set

1. Evaluate the following trigonometric expressions.

a.
$$2\sin\left(\frac{\pi}{8}\right)\cos\left(\frac{\pi}{8}\right)$$

b. $\frac{1}{2}\sin\left(\frac{\pi}{12}\right)\cos\left(\frac{\pi}{12}\right)$
c. $4\sin\left(-\frac{5\pi}{12}\right)\cos\left(-\frac{5\pi}{12}\right)$
d. $\cos^{2}\left(\frac{3\pi}{8}\right) - \sin^{2}\left(\frac{3\pi}{8}\right)$

- e. $2\cos^{2}\left(\frac{\pi}{12}\right) 1$
- f. $1 2\sin^2\left(-\frac{\pi}{8}\right)$
- g. $\cos^2\left(-\frac{11\pi}{12}\right) 2$

h.
$$\frac{2\tan(\frac{\pi}{8})}{1-\tan^2(\frac{\pi}{8})}$$

$$i. \quad \frac{2\tan\left(-\frac{5\pi}{12}\right)}{1-\tan^2\left(-\frac{5\pi}{12}\right)}$$

j.
$$\cos^2\left(\frac{\pi}{8}\right)$$

k. $\cos\left(\frac{\pi}{8}\right)$

- $I. \quad \cos\left(-\frac{9\pi}{8}\right)$ $m. \quad \sin^2\left(\frac{\pi}{12}\right)$ $n. \quad \sin\left(\frac{\pi}{12}\right)$ $o. \quad \sin\left(-\frac{5\pi}{12}\right)$ $p. \quad \tan\left(\frac{\pi}{8}\right)$ $q. \quad \tan\left(\frac{\pi}{12}\right)$ $r. \quad \tan\left(-\frac{3\pi}{8}\right)$
- 2. Show that $\sin(3x) = 3\sin(x)\cos^2(x) \sin^3(x)$. (Hint: Use $\sin(2x) = 2\sin(x)\cos(x)$ and the sine sum formula.)
- 3. Show that $\cos(3x) = \cos^3(x) 3\sin^2(x)\cos(x)$. (Hint: Use $\cos(2x) = \cos^2(x) \sin^2(x)$ and the cosine sum formula.)
- 4. Use $\cos(2x) = \cos^2(x) \sin^2(x)$ to establish the following formulas. a. $\cos^2(x) = \frac{1 + \cos(2x)}{2}$ b. $\sin^2(x) = \frac{1 - \cos(2x)}{2}$.
- 5. Jamia says that because sine is an odd function, $\sin\left(\frac{\theta}{2}\right)$ is always negative if θ is negative. That is, she says that for negative values of, $\sin\left(\frac{\theta}{2}\right) = -\sqrt{\frac{1-\cos(\theta)}{2}}$. Is she correct? Explain how you know.
- 6. Ginger says that the only way to calculate $\sin\left(\frac{\pi}{12}\right)$ is using the difference formula for sine since $\frac{\pi}{12} = \frac{\pi}{3} \frac{\pi}{4}$. Fred says that there is another way to calculate $\sin\left(\frac{\pi}{12}\right)$. Who is correct, and why?
- 7. Henry says that by repeatedly applying the half-angle formula for sine we can create a formula for $sin\left(\frac{\theta}{n}\right)$ for any positive integer *n*. Is he correct? Explain how you know.

Addition and Subtraction Formulas 2/18/15

engage^{ny}